文件名称:rnn笔记本:RNN(SimpleRNN,LSTM,GRU)Tensorflow2.0和Keras笔记本(车间材料)
文件大小:6.86MB
文件格式:ZIP
更新时间:2024-02-25 10:50:18
deep-learning keras jupyter-notebook lstm gru
rnn笔记本 RNN(SimpleRNN,LSTM,GRU)Tensorflow2.0和Keras笔记本(车间材料) 滑梯 视频 某些部分是可以*地从我们的也可以购买一个完整的软件包,包括从波斯32个视频 笔记本电脑 RNN简介: 我们如何推断不同的序列长度? 加密货币预测 当我们使用return_sequences = True吗? 堆叠式RNN(深度RNN) 使用LSTM层 CNN + LSTM用于球运动分类 Keras中的TimeDistributed层是什么? 视频分类介绍 CNN + LSTM 通过预训练的CNN和LSTM进行动作识别 如何使用预训练的CNN作
【文件预览】:
rnn-notebooks-master
----07_text-classification-Emojify.ipynb(48KB)
----03_1_Cryptocurrency-predicting.ipynb(21KB)
----01_simple-RNN.ipynb(87KB)
----06_analogy-using-embeddings.ipynb(11KB)
----Slides()
--------RNN.pdf(5.51MB)
----02_1_simple-RNN-diffrent-sequence-length.ipynb(41KB)
----images()
--------emojifier-v2.png(151KB)
--------attn_mechanism.png(168KB)
--------attn_model.png(271KB)
--------data_set.png(201KB)
--------table.png(87KB)
--------image_1.png(240KB)
--------date_attention.png(131KB)
--------embedding1.png(327KB)
--------date_attention2.png(130KB)
--------cosine_sim.png(104KB)
--------poorly_trained_model.png(10KB)
----09_add-numbers-with-seq2seq.ipynb(16KB)
----02_2_simple-RNN-diffrent-sequence-length.ipynb(55KB)
----TimeDistributed.ipynb(3KB)
----nmt_utils.py(7KB)
----10_Neural-machine-translation-with-attention-for-date-convert.ipynb(59KB)
----05-1-video-action-recognition-train-extract-features-with-cnn.ipynb(9KB)
----README.md(4KB)
----11_nmt-with-attention.ipynb(91KB)
----final_cnn_lstm.ipynb(66KB)
----logo.png(35KB)
----05-2_video-action-recognition-train-rnn.ipynb(56KB)
----08_shahnameh-text-generation-language-model.ipynb(38KB)
----04_simple-CNN-LSTM.ipynb(129KB)
----12_image-captioning-with-attention.ipynb(1.61MB)
----03_2_Cryptocurrency-predicting.ipynb(20KB)