文件名称:情境特征及其在情感分类模型中的应用
文件大小:1.12MB
文件格式:PDF
更新时间:2024-05-20 07:00:43
情境特征 情感分类 层级双向LSTM
研究情境特征在文本分类中的作用,提出了一种层级双向LSTM模型用于情感分类问题。该模型首先将句子分词,把词向量作为第一层双向LSTM模型的输入;其次从文档中提取出稠密、连续的向量作为情境特征;然后将第一层模型的输出向量和情境向量共同输入第二层双向LSTM;最后将这种层级双向的LSTM模型的输出向量通过sigmoid函数进行分类。情境向量作用于每个句子,一致的情感得到增强,不一致的情感被弱化,从而提高了分类的精度。在两个公开数据集上的实验表明,整合了情境特征的层级双向LSTM取得较优的精度。除此之外,通过在一个包含两万余条中文评论的公开数据集上对模型进行测试,表明该模型测试正确率相比于普通的LSTM和双向LSTM都有提升,说明情境特征对于提升情感分类的作用比较显著。