基于LSTM的无监督域自适应行人重识别

时间:2024-05-26 05:42:27
【文件属性】:

文件名称:基于LSTM的无监督域自适应行人重识别

文件大小:1.72MB

文件格式:PDF

更新时间:2024-05-26 05:42:27

域自适应 长短时记忆网络 无监督

本文提出一种基于无监督域自适应的行人重识别方法. 给定有标签的源域训练集和无标签的目标域训练集, 探索如何提升行人重识别模型在目标域测试集上的泛化能力. 以此为目的, 在模型的训练过程中, 将源域和目标域训练集同时输入到模型中进行训练, 提取全局特征的同时, 提取局部特征进行行人图像描述以学到更加细粒度的特征. 提出将长短时记忆网络(LSTM)以端到端的方式应用于行人的建模, 将其视为从头到脚的身体部分序列. 本文方法主要分为两个步骤: (1)利用StarGAN对无标签目标域图片进行数据增强; (2)源域和目标域数据集同时输入到全局分支和基于LSTM的局部分支共同训练. 在Market-1501和DukeMTMC-reID数据集上, 本文提出的模型都取得了较好的性能, 充分体现了其有效性.


网友评论