文件名称:论文研究-基于多策略的多目标粒子群优化算法.pdf
文件大小:600KB
文件格式:PDF
更新时间:2022-09-30 07:07:12
论文研究
针对目前多目标粒子群优化算法的收敛性能和非劣解的多样性不能同时得到满足等缺陷,提出一种基于多策略的多目标粒子群优化算法(Multi-Objective Particle Swarm Optimization algorithm for Multi-Strategy,MS-MOPSO)。采用非支配排序和拥挤距离排序相结合策略,重新划分外部种群和进化种群;采用小生境选择策略,在外部种群中选择最佳粒子作为领导粒子,用于领导进化种群中粒子的进化;在进化种群中利用多尺度高斯变异策略,平衡算法的全局搜索和局部精确搜索;采用邻域认知个体极值更新策略,不断更新个体极值。将该算法应用到典型的多目标测试函数,并与其他多目标优化算法进行对比分析,测试结果表明该算法中四个策略的有效性和互补性,同时验证了该算法不但具有较好的收敛性和收敛速度,而且该算法最优解的分布具有良好的均匀性和多样性。