文件名称:论文研究-一种新型非线性收敛因子的灰狼优化算法.pdf
文件大小:974KB
文件格式:PDF
更新时间:2022-08-11 13:10:39
灰狼优化算法,反向学习策略,函数优化,非线性
针对标准灰狼优化算法在求解复杂工程优化问题时存在求解精度不高和易陷入局部最优的缺点,提出一种新型灰狼优化算法用于求解无约束连续函数优化问题。该算法首先利用反向学习策略产生初始种群个体,为算法全局搜索奠定基础;受粒子群优化算法的启发,提出一种非线性递减收敛因子更新公式,其动态调整以平衡算法的全局搜索能力和局部搜索能力;为避免算法陷入局部最优,对当前最优灰狼个体进行变异操作。对10个测试函数进行仿真实验,结果表明,与标准灰狼优化算法相比,改进灰狼优化算法具有更好的求解精度和更快的收敛速度。