Block-Coordinate Gradient Descent method

时间:2015-04-05 14:41:03
【文件属性】:

文件名称:Block-Coordinate Gradient Descent method

文件大小:506KB

文件格式:PDF

更新时间:2015-04-05 14:41:03

block coordinate gradient descent

We consider the problem of minimizing the weighted sum of a smooth function f and a convex function P of n real variables subject to m linear equality constraints. We propose a block-coordinate gradient descent method for solving this problem, with the coordinate block chosen by a Gauss-Southwell-q rule based on sufficient predicted descent. We establish global convergence to first-order stationarity for this method and, under a local error bound assumption, linear rate of convergence. If f is convex with Lipschitz continuous gradient, then the method terminates in O(n2/) iterations with an -optimal solution. If P is separable, then the Gauss- Southwell-q rule is implementable in O(n) operations when m = 1 and in O(n2) operations when m>1. In the special case of support vector machines training, for which f is convex quadratic, P is separable, and m = 1,


网友评论

  • 有用,个人感觉很好。
  • 文章很经典,帮助很大
  • 很好!我正需要。
  • 文章确实很经典,非常值得看
  • 文章很经典,推荐下载