文件名称:Machine-Learning-Notes:吴安德(Andrew Ng)的机器学习课程讲义
文件大小:103.67MB
文件格式:ZIP
更新时间:2024-05-28 12:14:30
collection notes summarization maching-learning
机器学习笔记 收集了我的手写笔记,讲义pdf以及在解决问题中应用ML的技巧。 资源主要来自 , 和等在线课程平台。 目录 PCA:确定主要组件的数量 使用t-SNE可视化高二值化数据 创建 最后更新 权利要求 机器学习笔记 Andrew Ng在Coursera上的机器学习课程中的手写笔记和讲义pdf。 第一周:只有一个变量的线性回归 机器学习的定义 有监督/无监督学习 一变量线性回归 成本函数,学习率 批次梯度下降 第2周:具有多个变量的线性回归 多变量线性回归 正态方程法 向量化 第三周:逻辑回归和正则化 分类 逻辑回归:假设表示,决策边界,成本函数,梯度下降。 优化算法:共轭梯度,BFGS,L-BFGS 多类别分类:一对多分类 过度拟合:减少特征空间; 正则化。 正则化和正则化线性/逻辑回归,梯度下降 第4周:神经网络:表示形式 非线性假设 动机,代表 前向传播算法 学习功
【文件预览】:
Machine-Learning-Notes-master
----HandWrittenNotes()
--------WEEK4-Neural Networks_Representation.pdf(2.77MB)
--------WEEK1-Linear Regression With One Variable.pdf(3.01MB)
--------WEEK9-Anomaly Detection.pdf(11.62MB)
--------WEEK7-Support Vector Machines.pdf(8.73MB)
--------WEEK10-Large Scale Machine Learning .pdf(5.08MB)
--------WEEK2-Linear Regression with Multiple Variables .pdf(2.3MB)
--------WEEK5-Neural Networks Learning .pdf(5.49MB)
--------WEEK3-Logistic Regression and Regularization .pdf(7.48MB)
--------WEEK8-Unsupervised Learning and PCA.pdf(8.62MB)
--------WEEK11-Application Example Photo OCR.pdf(1.59MB)
--------WEEK6-Evaluate a Learning Algorithm .pdf(9.56MB)
----README.md(17KB)
----LectureSlides()
--------Week8-Lecture14-Dimentionality_Reduction_and_PCA.pdf(1.61MB)
--------Week11-Lecture18-Example_Photo_OCR.pdf(1.97MB)
--------Week7-Lecture12-Support_Vector_Machines.pdf(2.3MB)
--------Week6-Lecture11-Machine_Leanring_System_Design_and_Error_Analysis.pdf(498KB)
--------Week3-Lecture7-Overfitting_and_Regularization.pdf(3.23MB)
--------Week8-Lecture13-Unsupervised_Learning_Clustering.pdf(2.17MB)
--------Week1-Lecture2-Model_Representation.pdf(2.88MB)
--------Week1-Lecture3-Matrices_and_Vectors.pdf(1.8MB)
--------Week5-Lecture9-Neural_Networks_Learning.pdf(3.39MB)
--------Week2-Lecture4-Linear_Regression_with_Multiple_Variables.pdf(1.7MB)
--------Week3-Lecture6-Logistic_Regression_Classification.pdf(2.12MB)
--------Week9-Lecture16-Recommender_Systems.pdf(1.42MB)
--------Week9-Lecture15-Unsupervised_Learning_Anomaly_Detection.pdf(3.33MB)
--------Week2-Lecture5-Octave_Tutorial.pdf(242KB)
--------Week6-Lecture10-Advice_For_Applying_Machine_Learning.pdf(1.48MB)
--------Week1-Lecture1-Introduction.pdf(3.3MB)
--------Week4-Lecture8-Neural_Networks_Representation.pdf(4.97MB)
--------Week10-Lecture17-Large_Scale_Machine_Learning.pdf(1.98MB)