论文研究-改进并行粒子群算法优化RBF神经网络建模.pdf

时间:2022-09-30 21:46:04
【文件属性】:

文件名称:论文研究-改进并行粒子群算法优化RBF神经网络建模.pdf

文件大小:1.46MB

文件格式:PDF

更新时间:2022-09-30 21:46:04

论文研究

针对已有神经网络功放建模的建模精度不高,易陷入局部极值等问题,提出一种新的改进并行粒子群算法(Improved Parallel Particle Swarm Optimization,IPPSO)。该算法在并行粒子群算法的基础上引入自适应变异操作,防止陷入局部最优;在微粒的速度项中加入整体微粒群的全局最优位置,动态调节学习因子与线性递减惯性权重,加快微粒收敛。将该改进算法用于优化RBF神经网络参数,并用优化的网络对非线性功放进行建模仿真。结果表明,该算法能有效减小建模误差,且均方根误差提高19.08%,进一步提高了神经网络功放建模精度。


网友评论