论文研究-混合粒子群算法在job-shop动态调度中的应用.pdf

时间:2022-10-02 22:43:31
【文件属性】:

文件名称:论文研究-混合粒子群算法在job-shop动态调度中的应用.pdf

文件大小:634KB

文件格式:PDF

更新时间:2022-10-02 22:43:31

论文研究

针对飞行器健康状况难以准确预测的问题,提出了一种基于小波包变换与自适应多变量灰色预测模型对飞行器健康状况进行预测的新方法。采用先进的声发射技术监测飞行器关键部件的健康状态,运用小波包对由声发射监测系统募集到的飞行器关键部件原始声发射信号进行三级小波包分解,分别提取其第三级小波包分解中八个频段分解系数的能量最大值、方差最大值和范数最大值作为特征向量,并以此构建三变量MVGFM(1,n,β)模型。运用该模型对飞行器关键部件的健康状态进行预测研究,并通过该模型预测值与特征真实值之间的相对偏差来修正模型中参数β,以提高模型的下一步预测精度。实验结果表明,提出的自适应MVGFM方法可以动态实现对飞行器关键部件裂纹故障的准确预测,其预测准确度明显高于GM(1,1)模型,从而证实了该方法的有效性。


网友评论