matlab最优化linprog代码-Linear-Model-Evaluation---Matlab-Deep-Inverse-Optimi

时间:2024-06-21 17:46:54
【文件属性】:

文件名称:matlab最优化linprog代码-Linear-Model-Evaluation---Matlab-Deep-Inverse-Optimi

文件大小:173KB

文件格式:ZIP

更新时间:2024-06-21 17:46:54

系统开源

matlab最优化linprog代码线性模型评估 - Matlab-Deep-Inverse-Optimization 在 Matlab 和 Python 之间解析参数以进行深度逆优化的框架,这在 Matlab Optim 工具箱中不可用。 深度逆向优化代码可以在这里找到 () 描述为调整参数的有效方法对于评估和找到神经科学中经验模型和优化前向模型的相关性非常必要。 该存储库可以将 Matlab 中的任何参数解析为深度逆优化存储库描述的 Python 代码。 要求 迷你conda 3 Python3 Matlab >= R2019a Python 3.7 火炬 deep_inv_opt 麻木的 matplotlib 在运行 Matlab 主代码之前,请按照以下步骤操作: 1.按照此链接() 中记录的说明安装 Anaconda 和 Miniconda 3 提示。 对于 Unix 或 Mac,请遵循以下说明()或 -- () 2.从Windows或Unix的Python提示从以下对PIP的下一个命令这个电流库添加TE requirements.txt文件安装的要求包: pip instal


【文件预览】:
Linear-Model-Evaluation---Matlab-Deep-Inverse-Optimization-master
----requirements.txt(190B)
----README.md(7KB)
----python()
--------model_deep_inv_opt.py(4KB)
--------model_inv_opt_including_more_parsing_variables.py(4KB)
--------model_inv_opt_new_sigma.py(4KB)
----test_linear_model.jpg(261KB)
----matlab_files()
--------load_anaconda_packages_unix.m(462B)
--------output_params.txt(70B)
--------load_anaconda_packages.m(1KB)
--------matlab_interface_python.m(3KB)
--------read_perf_inv_opt.m(486B)
--------matlab_interface_python_test_unix.m(2KB)
--------matlab_interface_python_test_unix_squared.m(2KB)
--------output_file_opt.txt(3KB)
--------matlab_interface_python_unix_squared_alternative_new.m(3KB)

网友评论