文件名称:基于NVIDIA Jetson TX2的道路场景分割
文件大小:1.07MB
文件格式:PDF
更新时间:2024-05-26 06:32:15
场景理解 深度学习 Tensor RT2语义分割 NVIDIA
图像语义分割是计算机视觉领域重要研究方向之一,其中基于深度学习的语义分割相较于传统分割算法更为高效可靠,可应用于交通监控、自动驾驶等领域的场景理解阶段.但复杂的分割网络在嵌入式平台上的推理速度较低,难以进行实际应用.因此针对交通监控、无人驾驶等应用背景,在嵌入式平台NVIDIA Jetson TX2上,采用基于深度卷积编解码器结构的图像分割网络,对道路场景进行语义分割,并基于NVIDIA的推理加速器TensorRT2,完成网络模型简化、网络自定义层添加与CUDA并行优化,实现了对网络推理阶段的加速.实验结果表明,加速引擎在TX2上的推理速度约为原模型的10倍,为复杂分割网络在嵌入式平台上的应用提供了支持.