CBOW_Word2Vec:用PyTorch实现连续词袋(CBOW)模型。 CBOW和Skip-gram一起是使用深度学习在NLP中最常用的词嵌入方法之一

时间:2024-05-22 18:06:57
【文件属性】:

文件名称:CBOW_Word2Vec:用PyTorch实现连续词袋(CBOW)模型。 CBOW和Skip-gram一起是使用深度学习在NLP中最常用的词嵌入方法之一

文件大小:2KB

文件格式:ZIP

更新时间:2024-05-22 18:06:57

Python

连续词袋(CBOW) NLP中使用深度学习经常使用连续词袋(CBOW)和Skip-gram模型。 给定目标词之前和之后的上下文词范围N,它会尝试预测当前(目标)词。 此代码是PyTorch教程在以下链接的Word Embeddings的“获取密集的词嵌入”中给出的练习的实现: https://pytorch.org/tutorials/beginner/nlp/word_embeddings_tutorial.html#getting-dense-word-embeddings 参考 有关单词嵌入的进一步研究,请阅读以下文章: 向量空间中单词表示的有效估计 word2vec解释:推导Mikolov等人的负采样词嵌入方法 单词和短语的分布式表示形式及其组成


【文件预览】:
CBOW_Word2Vec-master
----CBOW_pytorch.py(3KB)
----README.md(834B)

网友评论