文件名称:Movie_Reviews_Classification:使用情感分析将电影评论分为正面还是负面
文件大小:610KB
文件格式:ZIP
更新时间:2024-04-01 08:30:18
JupyterNotebook
电影评论分类 使用python中的情感分析库将IMDb电影评论分为正面或负面 情绪分析 情感分析是指使用自然语言处理(NLP),文本分析和计算来系统地提取,识别信息并将其分类为特定类别。 该项目使用python sklearn库中的高斯朴素贝叶斯和多项式朴素贝叶斯模型 朴素贝叶斯分类器 朴素贝叶斯分类器是python scikit学习库下的一组监督ML算法。 他们使用特征矩阵(所有因变量的向量)来预测类变量(特征矩阵中每一行的输出)。 这些算法的前提是所有特征彼此独立并且具有同等重要性。 在高斯朴素贝叶斯分类器中,特征的分布遵循高斯/正态分布并形成钟形图。 在多项式朴素贝叶斯分类器中,特征向量表示通过多项式分布生成某些事件的频率。 该分类器非常适合文本分类中的字数统计 关于 该项目从tsv文件读取评论。 使用正则表达式对请求进行清理后,将MNB分类算法应用于数据集。部署的Web应用程序
【文件预览】:
Movie_Reviews_Classification-main
----Movie_reviews_classification.ipynb(31KB)
----app.py(3KB)
----requirements.txt(86B)
----countvectorizer.pkl(1.28MB)
----Procfile(41B)
----README.md(2KB)
----setup.sh(134B)
----MNBmodel.pkl(48KB)