文件名称:sentimentanalysis:使用NLTK进行文本数据的自动情感分析
文件大小:3.19MB
文件格式:ZIP
更新时间:2024-04-30 00:22:10
JupyterNotebook
使用NLTK进行文本数据的自动情感分析 通讯155:人工智能和新媒体朱准se教授家庭作业2018年五月 该项目使用自然语言工具包(NLTK)情感分析功能来分析四个csv数据集(亚马逊产品评论,啤酒评论,电影评论和雨伞评论)的文本情感。 每个数据集包含成对的评论内容列表和一个数字评分。 用户生成的评分与NLTK生成的分数之间的相关性绘制在matplotlib条形图中。 我还发现编写了代码来查找与正面和负面情绪得分唯一相关的单词。 亚马逊评论 一些与评论得到负面情感评分唯一相关的有趣单词:损坏,讨厌,不糟糕,混乱,失望,严重一些与获得积极情绪评分的评论有关的有趣单词:维生素,混合 啤酒评论 一些与评论得到负面情感评分唯一相关的有趣单词:恐怖,死亡,谋杀一些与获得好评的评论独特相关的有趣单词:颜色,炫酷,迪士尼,朱莉·安德鲁斯 我认为分析对这组数据的作用是独特的,因为评论是针对不同电影的
【文件预览】:
sentimentanalysis-master
----README.md(3KB)
----amazon.csv(2.29MB)
----movie.csv(4.68MB)
----beer.csv(1.72MB)
----umbrella.csv(61KB)
----Homework2.ipynb(91KB)