文件名称:论文研究-精英遗传K-medoids聚类算法.pdf
文件大小:723KB
文件格式:PDF
更新时间:2022-09-30 16:37:29
论文研究
针对K-medoids算法易陷入局部最优和聚类结果不稳定的问题,提出了一种精英遗传K-medoids聚类算法。该算法使用精英策略来控制遗传操作的整体进化方向;根据种群的平均适应度引入若干随机个体来提高种群多样性,从而在一定程度上减少了遗传算法的早熟现象。为了提高进化效率,该算法设计出一种新的交叉方式;为了保证交叉变异结果的优秀性,该算法引入了一种竞争机制。8个数据集的仿真实验表明,该算法在提高聚类准确率的同时,聚类结果的稳定性也有所提高。