文件名称:论文研究-面向位置预测的动态轨迹模式挖掘.pdf
文件大小:1.65MB
文件格式:PDF
更新时间:2022-08-11 15:13:29
轨迹模式,时空数据挖掘,模式树,位置预测
针对海量的用户轨迹数据进行研究,提出一种动态分析移动对象轨迹模式、预测轨迹位置的方法(PRED)。首先使用改进的模式挖掘模型,提取轨迹频繁模式(简称T-模式);然后提出DPTUpdate算法,设计蕴涵时空信息的快捷数据结构——DPT(dynamic pattern tree),存储和查询移动物体的T-模式,并提出Prediction算法计算最佳匹配度,得到移动对象轨迹的预测位置。基于真实数据集进行对比实验,结果证明,PRED方法可提供动态分析的能力,平均准确率达到72%、平均覆盖率达到92.1%,与已有方法相比,其预测效果有显著提升。