文件名称:基于视频的车辆检测计数
文件大小:3KB
文件格式:M
更新时间:2021-05-28 09:40:46
高斯模型
针对智能交通系统中交通基础数据当前提取方式较匮乏的问题,提出了一种利用交通视频基于改进卡尔曼滤波的交通信息采集方法。首先,分析混合高斯模型在多车辆运动目标检测时易出现噪点、目标断裂、空洞等问题,提出了一种启发式改进方法;在获得检测结果的基础上,针对连续视频帧中多目标的确定问题,结合卡尔曼滤波和车辆运动特征,利用卡尔曼滤波对车辆位置进行最优估计,继而对前景目标进行启发式算法处理,提出了一种交通量实时检测方法;最后,实验结果表明文章方法能够有效改善多车辆目标检测中的噪声干扰和前景虚化问题。