文件名称:diffract, Fourier optics and imaging
文件大小:5.63MB
文件格式:PDF
更新时间:2014-03-24 17:08:35
Fourier optics
OKAN K. ERSOY 2007 Preface Diffraction and imaging are central topics in many modern and scientific fields. Fourier analysis and sythesis techniques are a unifying theme throughout this subject matter. For example, many modern imaging techniques have evolved through research and development with the Fourier methods. This textbook has its origins in courses, research, and development projects spanning a period of more than 30 years. It was a pleasant experience to observe over the years how the topics relevant to this book evolved and became more significant as the technology progressed. The topics involved are many and an highly multidisciplinary. Even though Fourier theory is central to understanding, it needs to be supplemented with many other topics such as linear systemtheory, optimization, numerical methods, imaging theory, and signal and image processing. The implementation issues and materials of fabrication also need to be coupled with the theory. Consequently, it is difficult to characterize this field in simple terms. Increasingly, progress in technology makes it of central significance, resulting in a need to introduce courses, which cover the major topics together of both science and technology. There is also a need to help students understand the significance of such courses to prepare for modern technology. This book can be used as a textbook in courses emphasizing a number of the topics involved at both senior and graduate levels. There is room for designing several one-quarter or one-semester courses based on the topics covered. The book consists of 20 chapters and three appendices. The first three chapters can be considered introductory discussions of the fundamentals. Chapter 1 gives a brief introduction to the topics of diffraction, Fourier optics and imaging, with examples on the emerging techniques in modern technology. Chapter 2 is a summary of the theory of linear systems and transforms needed in the rest of the book. The continous-space Fourier transform, the real Fourier transform and their properties are described, including a number of examples. Other topics involved are covered in the appendices: the impulse function in Appendix A, linear vector spaces in Appendix B, the discrete-time Fourier transform, the discrete Fourier transform, and the fast Fourier transform (FFT) in Appendix C. Chapter 3 is on fundamentals of wave propagation. Initially waves are described generally, covering all types of waves. Then, the chapter specializes into electromagnetic waves and their properties, with special emphasis on plane waves. The next four chapters are fundamental to scalar diffraction theory. Chapter 4 introduces the Helmholtz equation, the angular spectrum of plane waves, the Fresnel-Kirchoff and Rayleigh-Sommerfeld theories of diffraction. They represent wave propagation as a linear integral transformation closely related to the Fourier transform.