Applied Deep Learning

时间:2022-01-15 03:53:48
【文件属性】:

文件名称:Applied Deep Learning

文件大小:11.59MB

文件格式:PDF

更新时间:2022-01-15 03:53:48

深度学习

使用深度学习中的高级主题,例如优化算法,超参数调整,丢失和错误分析,以及解决训练深度神经网络时遇到的典型问题的策略。您将首先研究激活函数,主要是使用单个神经元(ReLu,Sigmoid和Swish),了解如何使用TensorFlow执行线性和逻辑回归,并选择正确的成本函数。 下一节将讨论具有多个层和神经元的更复杂的神经网络架构,并探讨权重随机初始化的问题。整章专门介绍神经网络误差分析的完整概述,给出了解决来自不同分布的方差,偏差,过度拟合和数据集的问题的示例。 Applied Deep Learning还讨论了如何在不使用除NumPy之外的任何Python库的情况下完全从头开始实现逻辑回归,让您了解TensorFlow等库如何实现快速有效的实验。包括每种方法的案例研究,以实施所有理论信息。您将发现编写优化的Python代码的技巧和窍门(例如使用NumPy进行矢量化循环)。


网友评论