Andrew Ng CS229 课程英文版讲义(2017)

时间:2021-08-21 07:41:43
【文件属性】:

文件名称:Andrew Ng CS229 课程英文版讲义(2017)

文件大小:4.81MB

文件格式:ZIP

更新时间:2021-08-21 07:41:43

Machine Lear

Course Description This course provides a broad introduction to machine learning and statistical pattern recognition. Topics include: supervised learning (generative/discriminative learning, parametric/non-parametric learning, neural networks, support vector machines); unsupervised learning (clustering, dimensionality reduction, kernel methods); learning theory (bias/variance tradeoffs; VC theory; large margins); reinforcement learning and adaptive control. The course will also discuss recent applications of machine learning, such as to robotic control, data mining, autonomous navigation, bioinformatics, speech recognition, and text and web data processing.


【文件预览】:
斯坦福大学机器学习课程原始讲义2017
----cs229-notes7a.pdf(265KB)
----cs229-notes9.pdf(83KB)
----ps2.pdf(209KB)
----cs229-prob.pdf(286KB)
----ps0.pdf(159KB)
----cs229-linalg.pdf(200KB)
----cs229-cvxopt2.pdf(199KB)
----cs229-notes5.pdf(87KB)
----error-analysis.pdf(329KB)
----cs229-notes7b.pdf(51KB)
----cs229-notes1.pdf(228KB)
----cs229-notes13.pdf(226KB)
----cs229-notes10.pdf(70KB)
----cs229-notes12.pdf(167KB)
----cs229-notes4.pdf(110KB)
----cs229-notes3.pdf(189KB)
----cs229-notes8.pdf(80KB)
----cs229-cvxopt.pdf(165KB)
----cs229-notes-backprop.pdf(148KB)
----ps4.pdf(224KB)
----cs229-notes-deep_learning.pdf(333KB)
----ps1.pdf(130KB)
----cs229-notes11.pdf(76KB)
----cs229-notes6.pdf(51KB)
----cs229-notes2.pdf(861KB)
----ps3.pdf(372KB)

网友评论