Computational Intelligence:An Introduction

时间:2011-10-27 05:55:36
【文件属性】:

文件名称:Computational Intelligence:An Introduction

文件大小:12.14MB

文件格式:TGZ

更新时间:2011-10-27 05:55:36

Computational Intelligence

Chapter 1—Preliminaries 1.1. Computational Intelligence: its inception and research agenda 1.2. Organization and readership 1.3. References Chapter 2—Neural Networks and Neurocomputing 2.1. Introduction 2.2. Generic models of computational neurons 2.3. Architectures of neural networks - a basic taxonomy 2.3.1. Radial Basis function neural networks 2.4. Learning in neural networks 2.4.1. Neural networks as universal approximators 2.4.2. Generic modes of learning in neural networks 2.4.3. Performance indexes in training of neural networks 2.5. Selected classes of learning methods 2.5.1. Gradient-based optimization of multivariable functions 2.5.2. Perceptron learning rule 2.5.3. Delta learning rule 2.5.4. Backpropagation learning 2.5.5. Hebbian learning 2.5.6. Competitive learning 2.5.7. Self-organizing maps 2.5.8. Learning in presence directly and indirectly labeled patterns 2.6. Generalization abilities of neural networks 2.7. Enhancements of gradient-based learning in neural networks 2.8. Concluding remarks 2.9. Problems 2.10. References Chapter 3—Fuzzy Sets 3.1. Introduction 3.2. Basic definition 3.3. Types of membership functions 3.4. Characteristics of a fuzzy set 3.5. Membership function determination 3.5.1. Horizontal method of membership estimation 3.5.2. Vertical method of membership estimation 3.5.3. Pairwise comparison method of membership function estimation 3.5.4. Problem specification-based membership determination 3.5.5. Membership estimation as a problem of parametric optimization 3.6. Fuzzy relations 3.7. Set theory operations and their properties 3.8. Triangular norms 3.9. Triangular norms as the models of operations on fuzzy sets 3.10. Information-based characteristics of fuzzy sets 3.10.1. Entropy measure of fuzziness 3.10.2. Energy measure of fuzziness 3.10.3. Specificity of a fuzzy set 3.11. Matching measures 3.11.1. Possibility and necessity measures 3.11.2. Compatibility measure 3.12. Numerical representation of fuzzy sets 3.13. Rough sets 3.14. Rough sets and fuzzy sets 3.15. Shadowed sets 3.16. The frame of cognition 3.16.1. Basic definition 3.16.2. Main properties 3.16.3. Approximation aspects of the frame of cognition 3.16.4. Robustness properties of the frame of cognition 3.17. Probability and fuzzy sets 3.18. Hybrid fuzzy-probabilistic models of uncertainty 3.19. Conclusions 3.20. Problems 3.21. References Chapter 4—Computations with Fuzzy Sets 4.1. Introductory remarks 4.2. The extension principle 4.3. Fuzzy numbers 4.3.1. Basic characteristics 4.3.2. Computing with fuzzy numbers 4.3.3. Accumulation of fuzziness in computing with fuzzy numbers 4.4. Fuzzy rule-based computing 4.4.1. Rules with fuzzy sets 4.4.2. A design of fuzzy rule - based systems 4.4.3. Fuzzy Hebbian learning and associative memory as a realization of rule-based systems 4.5. Fuzzy controller and fuzzy control 4.5.1. Generic concept of fuzzy control 4.5.2. Design principles of the fuzzy controller 4.5.3. Numerical experiments 4.5.4. Fuzzy scheduler 4.6. Rule-based systems with nonmonotonic operations 4.6.1. Nonmonotonic AND and OR operations: a generalization 4.6.2. Estimation problem of the default fuzzy set 4.6.3. Approximate reasoning with defaults 4.7. Conclusions 4.8. Problems 4.9. References Chapter 5—Evolutionary Computing 5.1. Introduction 5.2. Gradient-based and probabilistic optimization as examples of single-point search techniques 5.3. Genetic algorithms - fundamentals and a basic algorithm 5.4. Schemata Theorem - a conceptual backbone of GAs 5.5. From search space to GA search space 5.5.1. Gray coding 5.5.2. Floating point coding 5.6. Exploration and exploitation of the search space 5.7. Experimental studies 5.8. Classes of evolutionary computation 5.8.1. Evolutionary Strategies 5.8.2. Evolutionary Programming 5.8.3. Genetic Programming 5.9. Conclusions 5.10 Problems 5.11. References Chapter 6—Fuzzy Neural Systems 6.1. Introduction 6.2. Neurocomputing in fuzzy set technology 6.3. Fuzzy sets in the technology of neurocomputing 6.4. Fuzzy sets in the preprocessing and enhancements of training data 6.4.1. Nonlinear data normalization 6.4.2. Variable processing resolution - fuzzy receptive fields 6.5. Uncertainty representation in neural networks 6.6. Neural calibration of membership functions 6.6.1. The Optimization Algorithm 6.6.2. Neural network realization of the nonlinear mapping 6.7. Knowledge-based learning schemes 6.7.1. Metalearning and fuzzy sets 6.7.2. Fuzzy clustering in revealing relationships within data 6.7.2.1. Fuzzy perceptron 6.7.2.2. Conditional (context-sensitive) clustering as a preprocessing phase in neural networks 6.8. Linguistic interpretation of neural networks 6.8.1. From neural networks to rule-based systems 6.8.2. Linguistic Interpretation of self-organizing maps 6.9. Hybrid fuzzy neural computing structures 6.9.1. Architectures of hybrid fuzzy neural systems 6.9.2. Temporal aspects of interaction in fuzzy-neural systems 6.10. Conclusions 6.11. Problems 6.12. References Chapter 7—Fuzzy Neural Networks 7.1. Logic-based neurons 7.1.1. Aggregative OR and AND logic neurons 7.1.2. OR/AND neurons 7.1.3. Conceptual and computational augmentations of fuzzy neurons 7.1.3.1. Representing inhibitory information 7.1.3.2. Computational enhancements of the neurons 7.2. Logic neurons and fuzzy neural networks with feedback 7.3. Referential logic-based neurons 7.4. Learning in fuzzy neural networks 7.4.1. Learning policies for parametric learning in fuzzy neural networks 7.4.2. Performance index 7.4.3. Interpretation of fuzzy neural networks 7.5. Case studies 7.5.1. Logic filtering 7.5.2. Minimization of multiple output two-valued combinational systems 7.5.3. FNN as a model of approximate reasoning 7.5.4. Sensor fusion via fuzzy neurons 7.6. Conclusions 7.7. Problems 7.8. References Chapter 8—CI systems 8.1. Introduction 8.2. Fuzzy encoding in evolutionary computing 8.2.1. Direct methods of fuzzy encoding 8.2.2. Weak encoding with fuzzy sets 8.3. Fuzzy crossover operations 8.4. Fuzzy metarules in genetic computing 8.5. Relational structures and their optimization 8.5.1. Image compression as a problem of relation reduction 8.5.2. GA-optimized data mining 8.6. The Satisfiability Problem 8.7. Evolutionary rule-based modeling of analytical relationships 8.8. Genetic optimization of neural networks 8.8.1. Parametric optimization of neural networks 8.8.2. Fuzzy genetic optimization of neural networks 8.9. Genetic optimization of rule-based systems 8.10. Conclusions 8.11. Problems 8.12. References Index


网友评论

  • 很不错的书,很有用,不过是网页版的,学习中。。。。。
  • 这本书不错,就是英文读起来累
  • 比较全面,是入门课程选择的不二之选
  • 挺不错的 计算智能方面的
  • 不好,是网页版的
  • 找了好久的书。非常感谢
  • 下错了,不是我想要的,这个书不是那本经典中文译本对应的英文版本。作者不是Engelbrecht
  • 书挺不错的,网页版看起来也很好。
  • 网页版的 占空间比pdf的大,还可以~
  • 很不错的书, 找了很久,很有用,就是没有中文版的。里面很多内容,比如遗传算法,模糊算法,神经网络等内容都很不错。
  • 一直期待的书:计算智能的经典书籍。唯一的不足是,不是pdf版,是网页版,看起来比较麻烦。
  • 不错的分享,介绍了计算智能的很多个具体分支,学到很多。