文件名称:机器学习:Python中机器学习算法的示例
文件大小:113KB
文件格式:ZIP
更新时间:2024-02-26 11:26:00
scikit-learn machine-learning-algorithms scikit-learnPython
机器学习 Python中的机器学习算法示例
【文件预览】:
Machine-Learning-master
----Features p3_alternate.py(731B)
----p36 Kmean Titanic.py(2KB)
----P22_SVM ASSERTION.py(0B)
----Regression_p7.py(0B)
----P12_test_linR_algo.py(2KB)
----Linear Regression()
--------data.csv(2KB)
--------demo.py(2KB)
--------D1.csv(899B)
--------ufo.csv(313B)
----LinearRegression_ALGO P9.py(646B)
----P25_SVM.py(775B)
----P19_K_NEAR.py(1KB)
----P15_eucledian_distance.py(147B)
----P17_K_n.py(980B)
----p38_Titanix.py(4KB)
----Features and Labels p3.py(838B)
----test.py(164B)
----P30_SVM_KERNELS.py(0B)
----P29_SVM_Kernels.py(122B)
----P12_2.py(2KB)
----p34_clustering intro.py(608B)
----P34_Clustering.py(608B)
----P33_SVM_multiclass.py(765B)
----titanic.xls(278KB)
----p6_pickling_and_scaling.py(2KB)
----p5_prediction_into_future.py(2KB)
----Linearregression_ALGO_p8.py(354B)
----Regression Training and testing p4.py(2KB)
----p38_KMeans.py(3KB)
----p24_SVM_optimiztion.py(0B)
----P16_own_K_narest_neig.py(538B)
----P21_vectors.py(32B)
----p37 Custom K means.py(1KB)
----LinearRegression_algo_p11.py(1KB)
----P26_SVM.py(2KB)
----Regression P2.py(447B)
----P32.py(8KB)
----P20_SVM.py(765B)
----SVM_p4_alternate.py(2KB)
----P13 Classification K Nearest Neighbours.py(0B)
----P28_SVM.py(5KB)
----LineraRegression_ALGO P10.py(646B)
----README.md(69B)
----P31_softmarginSVM.py(8KB)
----Comparison Algorithms()
--------Comparison.py(3KB)
----P14 Classification K Nearest Neighbours.py(793B)
----P18_k_Near.py(1KB)
----P27_SVM.py(3KB)