大数据挖掘技术与应用

时间:2021-01-28 14:00:17
【文件属性】:

文件名称:大数据挖掘技术与应用

文件大小:108.34MB

文件格式:RAR

更新时间:2021-01-28 14:00:17

大数据挖掘

本书针对数据的海量性、复杂性、高维性、模糊性和不完整性,对数据挖掘技术中的聚类分析和关联规则分析进行了系统的研究。设计与实现了基于密度和自适应密度可达聚类算法、基于簇特征的动态增量聚类算法、并行聚类算法、基于密度加权的模糊聚类算法、高唯复杂数据聚类算法、基于数据场的聚类算法、基于距离的量化关联规则和基于数据场的量化关联规则算法,给出了在矿产资源评价、遥感图像分类、矿业经济分析中的应用例证。全书共分11章,主要内容包括:绪论,基于密度和密度可达聚类分析,基于簇特征的动态增量聚类分析,并行聚类分析,基于密度加权的模糊聚类分析,高唯复杂数据聚类分析,基于数据场的聚类分析,基于距离的量化关联规则,基于数据场的量化关联规则,数据挖掘结果可视化和数据挖掘算法应用。


【文件预览】:
大数据挖掘技术与应用.pdf

网友评论