文件名称:SFND_Lidar_Obstacle_Detection
文件大小:194.07MB
文件格式:ZIP
更新时间:2024-03-25 23:44:31
C++
传感器融合无人驾驶汽车课程实践环境(测验) 解释 此回购协议包含一个练习环境,可在与Lidar一起工作时了解ransac,欧几里得聚类等。 它是由Udacity和讲师Aaron Brown创建的。 我的贡献主要是测验部分。 有关原始的自述文件文本和安装说明,请参见下文。 欢迎参加自动驾驶汽车的传感器融合课程。 在本课程中,我们将讨论传感器融合,这是从多个传感器获取数据并将其组合以使我们对周围世界有更好了解的过程。 我们将主要集中在激光雷达和雷达这两个传感器上。 到最后,我们将融合来自这两个传感器的数据来跟踪道路上的多辆汽车,以估计它们的位置和速度。 激光雷达传感通过发送数千个激光信号为我们提供高分辨率数据。 这些激光从物体反射回来,返回到传感器,然后我们可以通过定时返回信号所需的时间来确定物体的距离。 我们还可以通过测量返回信号的强度来告诉一些有关被击中的物体的信息。 每束激光都处于红