文件名称:论文研究-基于改进自适应PSO算法的WSN覆盖优化方法.pdf
文件大小:1.39MB
文件格式:PDF
更新时间:2022-08-11 14:55:12
WSN覆盖优化,自适应PSO,动态惯性权重,进化度因子,聚合度因子
在标准粒子群优化(particle swarm optimization, PSO)算法的基础上提出了一种带有动态惯性权重的自适应粒子群算法, 以实现移动WSN对被监测区域的覆盖。新算法引入了粒子群进化度因子和粒子群聚合度因子, 这两个因子的数值主要受粒子群的平均适应值、局部最优值和全局最优值影响。使用这两个因子调整惯性权重会使算法带有一定的自适应性, 这种自适应性使得算法在迭代过程中既不会因步长过小而局部收敛, 也不会因步长过大而跳过待求解问题的最优值。仿真结果表明, 相比标准PSO算法, 改进后的自适应PSO算法使移动WSN的覆盖率提升了5%~8%。