文件名称:论文研究-尺度无关的级联卷积神经网络人脸检测算法.pdf
文件大小:1.53MB
文件格式:PDF
更新时间:2022-08-11 13:03:11
级联卷积神经网络,空间金字塔池化,人脸检测
卷积神经网络在进行图片处理时需要输入固定尺寸大小的图片,该限制会导致原图在缩放过程中损失大部分信息。另外,目前人脸检测算法多用单一结构网络进行特征提取,这就使得算法的泛化能力较弱。针对以上两个问题,提出了一种将级联卷积神经网络与空间金字塔池化相结合的人脸检测算法。该方法将三级卷积神经网络模型连接起来,其中三级神经网络模型之间各不相同,结构从简单到复杂,在不同层次的神经网络上提取不同的人脸特征并筛选图片,完成对图片中人脸区域的检测。同时,在每级网络层次中加入空间金字塔池化层,这种池化策略无须固定尺寸大小的输入,增加了模型输入的尺寸选择。在标准人脸数据集中,该方法相对于传统方法实现了模型的多尺度输入,提升了检测性能,并降低了检测人脸的时间。