文件名称:MIT数据挖掘开放课程
文件大小:1.1MB
文件格式:RAR
更新时间:2014-01-08 06:48:39
MIT 数据挖掘
资料探勘概述 Data Mining Overview 用K-最近邻法做预测和分类 Prediction and Classification with k-Nearest Neighbors 例1:骑乘式割草机 Example 1: Riding Mowers 表 11.1,从页 584:Johnson,Richard,和Dean Wichern. 《应用多变量统计分析》 5th ed. Prentice-Hall,2002。ISBN;0-13-092553-5 Table 11.1 from page 584 of: Johnson, Richard, and Dean Wichern. Applied Multivariate Statistical Analysis. 5th ed. Prentice-Hall, 2002. ISBN: 0-13-092553-5. 2 分类及贝氏法则,朴素贝氏分析 Classification and Bayes Rule, Naïve Bayes 3 分类树 Classification Trees 〈家庭数据库(Boston)〉是由美国加州大学Irvine分校计算机与计算机科学学院公布的资料:机器智能学习数据库。(Machine Learning Repository of Detabases) "Housing Database (Boston)." Publicly available data at University of California, Irvine School of Information and Computer Science, Machine Learning Repository of Databases. 4 例2区别分析:Fisher的Iris实验数据(前后需统一) Discriminant Analysis Example 2: Fisher's Iris data “鸢尾花研究数据库”是由美国加州大学Irvine分校计算机与计算机科学学院公布的资料:机器智能学习数据库。(Machine Learning Repository of Detabases) "Iris Plant Database." Publicly available data at University of California, Irvine School of Information and Computer Science, Machine Learning Repository of Databases. 5 逻辑回归案例 Logistic Regression Case 手摇纺织机 Handlooms 6 神经网络 Neural Nets 7 作业讨论-见指定作业 问题1 Discussion of homework - see Problem 1 in assignments section 8 多变数回归检视 Multiple Regression Review 9 资料探勘中的线性复回归模式 Multiple Linear Regression in Data Mining 10 回归树,案例:IBM/GM周投资报酬率 Regression Trees, Case: IBM/GM weekly returns 资料探勘技术的比较 Comparison of Data Mining Techniques 作业讨论-见指定作业问题2 Discussion of homework - see Problem 2 in assignments section 11 K-均值分群法,阶层分群法 k-Means Clustering, Hierarchical Clustering 12 案例:零售营销规划 Case: Retail Merchandising 13 期中考试 Midterm Exam 14 主成分分析 Principal Components 例一,长子头围测量:Rencher,Alvin。《多变数分析方法》第二版。 Example 1, Head Measurements of Adult Sons: Rencher, Alvin. Methods of Multivariate Analysis. 2nd ed. Wiley-Interscience, 2002. Table 3.7, p. 79. ISBN: 0-471-46172-5. 例 2, 酒的特质: 〈酒类的识别数据库〉是由美国加州大学Irvine分校计算机与计算机科学学院公布的资料: 机器智能学习数据库。(Machine Learning Repository of Detabases) Example 2, Charactersitics of Wine: "Wine Recognition Database." Publicly available data at University of California, Irvine School of Information and Computer Science, Machine Learning Repository of Databases. 15 Dr. Ira Haimowitz博士客座演讲:资料探勘及Pfizer公司的客户关系管理 Guest Lecture by Dr. Ira Haimowitz: Data Mining and CRM at Pfizer 16 关联规则(购物篮分析) Association Rules (Market Basket Analysis) Han,Jiawei和Micheline Kamber。资料探勘:概念和技术。Morgan Kauffman Publishers,2001。例6.1(Figure 6.2)。ISBN:1-55860-489-8。 Han, Jiawei, and Micheline Kamber. Data Mining: Concepts and Techniques. Morgan Kauffman Publishers, 2001. Example 6.1 (Figure 6.2). ISBN: 1-55860-489-8. 17 推荐系统:协同过滤 Recommendation Systems: Collaborative Filtering 18 John Elder IV博士的客座演讲:资料探勘的实际操作。 Guest Lecture by Dr. John Elder IV, Elder Research: The Practice of Data Mining
【文件预览】:
MIT 数据挖掘开发课程
----Classification tree.pdf(117KB)
----k-Means Clustering, Hierarchical Clustering .pdf(189KB)
----Overview.pdf(160KB)
----Multiple Linear Regression in data mining.pdf(102KB)
----Association Rules (Market Basket Analysis).pdf(96KB)
----k-Nearest.pdf(96KB)
----NeuralNet2002.pdf(128KB)
----LOGISTIC REGRESSION.pdf(108KB)
----Data discrimination.pdf(91KB)
----Principal Components .pdf(191KB)
----handloomsnew.pdf(41KB)
----Judging the Performance of.pdf(210KB)
----Multiple Linear Regression.pdf(110KB)
----Comparison of Data Mining Techniques.pdf(24KB)