文件名称:MapReduce简介
文件大小:3.07MB
文件格式:PPT
更新时间:2021-04-19 07:57:03
MapReduce
大规模数据处理时,MapReduce在三个层面上的基本构思 如何对付大数据处理:分而治之 对相互间不具有计算依赖关系的大数据,实现并行最自然的办法就是采取分而治之的策略 上升到抽象模型:Mapper与Reducer MPI等并行计算方法缺少高层并行编程模型,为了克服这一缺陷,MapReduce借鉴了Lisp函数式语言中的思想,用Map和Reduce两个函数提供了高层的并行编程抽象模型 上升到构架:统一构架,为程序员隐藏系统层细节 MPI等并行计算方法缺少统一的计算框架支持,程序员需要考虑数据存储、划分、分发、结果收集、错误恢复等诸多细节;为此,MapReduce设计并提供了统一的计算框架,为程序员隐藏了绝大多数系统层面的处理细节