文件名称:Hands-On Machine Learning with Scikit-Learn and TensorFlow
文件大小:45.2MB
文件格式:PDF
更新时间:2021-01-17 10:23:06
机器学习
This book assumes that you know close to nothing about Machine Learning. Its goal is to give you the concepts, the intuitions, and the tools you need to actually implement programs capable of learning from data. We will cover a large number of techniques, from the simplest and most commonly used (such as linear regression) to some of the Deep Learning techniques that regularly win competitions. Rather than implementing our own toy versions of each algorithm, we will be using actual production-ready Python frameworks: •Scikit-Learn is very easy to use, yet it implements many Machine Learning algorithms efficiently, so it makes for a great entry point to learn Machine Learning. •TensorFlow is a more complex library for distributed numerical computation using data flow graphs. It makes it possible to train and run very large neural net‐ works efficiently by distributing the computations across potentially thousands of multi-GPU servers. TensorFlow was created at Google and supports many of their large-scale Machine Learning applications. It was open-sourced in November 2015. The book favors a hands-on approach, growing an intuitive understanding of Machine Learning through concrete working examples and just a little bit of theory. While you can read this book without picking up your laptop, we highly recommend you experiment with the code examples available online as Jupyter notebooks at https://github.com/ageron/handson-ml.