斯坦福大学-机器学习公开课课件.rar

时间:2017-06-12 08:47:07
【文件属性】:

文件名称:斯坦福大学-机器学习公开课课件.rar

文件大小:3.32MB

文件格式:RAR

更新时间:2017-06-12 08:47:07

斯坦福 机器学习 课件

斯坦福大学的机器学习公开课课件 Lecture notes 1 (ps) (pdf) Supervised Learning, Discriminative Algorithms Lecture notes 2 (ps) (pdf) Generative Algorithms Lecture notes 3 (ps) (pdf) Support Vector Machines Lecture notes 4 (ps) (pdf) Learning Theory Lecture notes 5 (ps) (pdf) Regularization and Model Selection Lecture notes 6 (ps) (pdf) Online Learning and the Perceptron Algorithm. (optional reading) Lecture notes 7a (ps) (pdf) Unsupervised Learning, k-means clustering. Lecture notes 7b (ps) (pdf) Mixture of Gaussians Lecture notes 8 (ps) (pdf) The EM Algorithm Lecture notes 9 (ps) (pdf) Factor Analysis Lecture notes 10 (ps) (pdf) Principal Components Analysis Lecture notes 11 (ps) (pdf) Independent Components Analysis Lecture notes 12 (ps) (pdf) Reinforcement Learning and Control Section Notes Section notes 1 (pdf) Linear Algebra Review and Reference Section notes 2 (pdf) Probability Theory Review Files for the Matlab tutorial: sigmoid.m, logistic_grad_ascent.m, matlab_session.m Section notes 4 (ps) (pdf) Convex Optimization Overview, Part I Section notes 5 (ps) (pdf) Convex Optimization Overview, Part II Section notes 6 (ps) (pdf) Hidden Markov Models Section notes 7 (pdf) The Multivariate Gaussian Distribution Section notes 8 (pdf) More on Gaussian Distribution Section notes 9 (pdf) Gaussian Processes


【文件预览】:
课件
----Section notes 5-Convex Optimization Overview, Part II .pdf(197KB)
----cs229-notes4 Learning Theory .pdf(109KB)
----cs229-notes5 Regularization and Model Selection .pdf(87KB)
----cs229-notes3 Support Vector Machines .pdf(176KB)
----Section notes 6-Hidden Markov Models .pdf(198KB)
----Section notes 4-Convex Optimization Overview, Part I.pdf(149KB)
----cs229-notes9 Factor Analysis .pdf(81KB)
----cs229-notes12 Reinforcement Learning and Control .pdf(74KB)
----cs229-prob Probability Theory Review .pdf(147KB)
----cs229-notes7a Unsupervised Learning, k-means clustering. .pdf(265KB)
----cs229-notes11 Independent Components Analysis .pdf(74KB)
----cs229-notes2 Generative Algorithms .pdf(858KB)
----cs229-notes10 Principal Components Analysis .pdf(75KB)
----cs229-notes8 The EM Algorithm .pdf(81KB)
----Section notes 1-Linear Algebra Review and Reference .pdf(165KB)
----cs229-notes1 Supervised Learning, Discriminative Algorithms .pdf(230KB)
----cs229-notes6 Online Learning and the Perceptron Algorithm. (optional reading).pdf(51KB)
----Section notes 9-Gaussian Processes.pdf(160KB)
----cs229-notes7b Mixture of Gaussians .pdf(54KB)
----ML-advice.pdf(313KB)
----Section notes 7-The Multivariate Gaussian Distribution.pdf(335KB)
----Section notes 8-More on Gaussian Distribution.pdf(117KB)

网友评论

  • 别人的笔记,但有学习价值
  • 新手入门,收藏了
  • 我想要的是教学视频或者PPT 这个不太满足需求 但资源本身还不错
  • 谢谢,还不错
  • 不是ppt,应该是讲义
  • 是别人的笔记,中文写的,作为视频相关的参考还是挺有帮助的。不过细节上还是需要自行把握,不可全信。
  • 不是PPT,是……笔记?
  • 不错不错,挺好的资源!
  • 这个是notes和exercises,不是PPt,还行吧
  • 内容很全 很不错的课件; 还有讨论课的课件,
  • 这个是notes和exercises,不是PPt,还行吧
  • 总体来说还不错,很适合我
  • 垃圾根本不是课件
  • 很经典的教材