Robust Optimization - Princeton University Press

时间:2013-07-05 16:22:03
【文件属性】:

文件名称:Robust Optimization - Princeton University Press

文件大小:10.76MB

文件格式:RAR

更新时间:2013-07-05 16:22:03

Robust Optimization SOCP LP SDP

written by Aharon Ben-Tal Laurent El Ghaoui Arkadi Nemirovski Copyright © 2009 by Princeton University Press PART I. ROBUST LINEAR OPTIMIZATION 1 Chapter 1. Uncertain Linear Optimization Problems and their Robust Counterparts 3 1.1 Data Uncertainty in Linear Optimization 3 1.2 Uncertain Linear Problems and their Robust Counterparts 7 1.3 Tractability of Robust Counterparts 16 1.4 Non-Affine Perturbations 23 1.5 Exercises 25 1.6 Notes and Remarks 25 Chapter 2. Robust Counterpart Approximations of Scalar Chance Constraints 27 2.1 How to Specify an Uncertainty Set 27 2.2 Chance Constraints and their Safe Tractable Approximations 28 2.3 Safe Tractable Approximations of Scalar Chance Constraints: Basic Examples 31 2.4 Extensions 44 2.5 Exercises 60 2.6 Notes and Remarks 64 Chapter 3. Globalized Robust Counterparts of Uncertain LO Problems 67 3.1 Globalized Robust Counterpart — Motivation and Definition 67 3.2 Computational Tractability of GRC 69 3.3 Example: Synthesis of Antenna Arrays 70 3.4 Exercises 79 3.5 Notes and Remarks 79 Chapter 4. More on Safe Tractable Approximations of Scalar Chance Constraints 81 4.1 Robust Counterpart Representation of a Safe Convex Approximation to a Scalar Chance Constraint 81 4.2 Bernstein Approximation of a Chance Constraint 83 4.3 From Bernstein Approximation to Conditional Value at Risk and Back 90 4.4 Majorization 105 4.5 Beyond the Case of Independent Linear Perturbations 109 4.6 Exercises 136 4.7 Notes and Remarks 145 PART II. ROBUST CONIC OPTIMIZATION 147 Chapter 5. Uncertain Conic Optimization: The Concepts 149 5.1 Uncertain Conic Optimization: Preliminaries 149 5.2 Robust Counterpart of Uncertain Conic Problem: Tractability 151 5.3 Safe Tractable Approximations of RCs of Uncertain Conic Inequalities 153 5.4 Exercises 156 5.5 Notes and Remarks 157 Chapter 6. Uncertain Conic Quadratic Problems with Tractable RCs 159 6.1 A Generic Solvable Case: Scenario Uncertainty 159 6.2 Solvable Case I: Simple Interval Uncertainty 160 6.3 Solvable Case II: Unstructured Norm-Bounded Uncertainty 161 6.4 Solvable Case III: Convex Quadratic Inequality with Unstructured Norm-Bounded Uncertainty 165 6.5 Solvable Case IV: CQI with Simple Ellipsoidal Uncertainty 167 6.6 Illustration: Robust Linear Estimation 173 6.7 Exercises 178 6.8 Notes and Remarks 178 Chapter 7. Approximating RCs of Uncertain Conic Quadratic Problems 179 7.1 Structured Norm-Bounded Uncertainty 179 7.2 The Case of ∩-Ellipsoidal Uncertainty 195 7.3 Exercises 201 7.4 Notes and Remarks 201 Chapter 8. Uncertain Semidefinite Problems with Tractable RCs 203 8.1 Uncertain Semidefinite Problems 203 8.2 Tractability of RCs of Uncertain Semidefinite Problems 204 8.3 Exercises 222 viii CONTENTS 14.1 Adjustable Robust Optimization: Motivation 355 14.2 Adjustable Robust Counterpart 357 14.3 Affinely Adjustable Robust Counterparts 368 14.4 Adjustable Robust Optimization and Synthesis of Linear Controllers 392 14.5 Exercises 408 14.6 Notes and Remarks 411 PART IV. SELECTED APPLICATIONS 415 Chapter 15. Selected Applications 417 15.1 Robust Linear Regression and Manufacturing of TV Tubes 417 15.2 Inventory Management with Flexible Commitment Contracts 421 15.3 Controlling a Multi-Echelon Multi-Period Supply Chain 432 Appendix A. Notation and Prerequisites 447 A.1 Notation 447 A.2 Conic Programming 448 A.3 Efficient Solvability of Convex Programming 460 Appendix B. Some Auxiliary Proofs 469 B.1 Proofs for Chapter 4 469 B.2 S-Lemma 481 B.3 Approximate S-Lemma 483 B.4 Matrix Cube Theorem 489 B.5 Proofs for Chapter 10 506 Appendix C. Solutions to Selected Exercises 511 C.1 Chapter 1 511 C.2 Chapter 2 511 C.3 Chapter 3 513 C.4 Chapter 4 513 C.5 Chapter 5 516 C.6 Chapter 6 519 C.7 Chapter 7 520 C.8 Chapter 8 521 C.9 Chapter 9 523 C.10 Chapter 12 525 C.11 Chapter 14 527 Bibliography 531 Index 539


【文件预览】:
Robust Optimization.pdf

网友评论

  • 非常好的入门书籍,赞一下!
  • 十分经典的著作,太好了。
  • 太给力了,谢谢
  • 很好,谢谢分享
  • 找了很久,终于下载到了
  • 东西很不错,扫描质量也好,优化领域的重要书籍,推荐
  • 扫描质量不错,鲁棒优化的讲述非常详细。
  • 好书,对优化问题的鲁棒性分析的全面到位,教科书般的著作。
  • 东西挺好,但是pdf切边比较严重。
  • 这是鲁棒优化领域中重要著作,作者是该领域中的权威