文件名称:Mathematics for Computer Science 2017.7z
文件大小:10.31MB
文件格式:7Z
更新时间:2022-08-14 11:20:54
计算机科学的数学
I 数学分析(Proofs) 简介(Introduction) 0.1 参考文献(References) 1 什么是证明?(What is a Proof?) 1.1 命题(Propositions) 1.2 谓词(Predicates) 1.3 公理化方法(The Axiomatic Method) 1.4 我们的公理(Our Axioms) 1.5 证明命题的含义(Proving an Implication) 1.6 证明「有且仅有」(Proving an「If and Only If」) 1.7 案例证明(Proof by Cases) 1.8 反证法(Proof by Contradiction) 1.9 证明的实战演练(Good Proofs in Practice) 1.10 参考文献(References) 2 良序原则(The Well Ordering Principle) 2.1 良序证明(Well Ordering Proofs) 2.2 良序证明模式(Template for Well Ordering Proofs) 2.3 素数因子分解(Factoring into Primes) 2.4 良序集合(Well Ordered Sets) 3 逻辑公式(Logical Formulas) 3.1 命题中的命题(Propositions from Propositions) 3.2 计算机程序中的命题逻辑(Propositional Logic in Computer Programs) 3.3 等价性和有效性(Equivalence and Validity) 3.4 命题的代数(The Algebra of Propositions) 3.5 SAT 问题(The SAT Problem) 3.6 谓词公式(Predicate Formulas) 3.7 参考文献(References) 4 数学上的数据类型(Mathematical Data Types) 4.1 集合(Sets) 4.2 序列(Sequences) 4.3 函数(Functions) 4.4 二元关系(Binary Relations) 4.5 有限基数(Finite Cardinality) 5 简介(Induction) 5.1 一般归纳法(Ordinary Induction) 5.2 强归纳法(Strong Induction) 5.3 强归纳法、一般归纳法和良序法(Strong Induction vs. Induction vs. Well Ordering) 6 状态机(State Machines) 6.1 状态和转换(States and Transitions) 6.2 不变量原则(The Invariant Principle) 6.3 部分正确性和终止(Partial Correctness & Termination) 6.4 稳定婚姻问题(The Stable Marriage Problem) 7 递归数据型(Recursive Data Types) 7.1 递归定义和结构归纳法(Recursive Definitions and Structural Induction) 7.2 Matched Brackets 字符串(Strings of Matched Brackets) 7.3 非负整数递归函数(Recursive Functions on Nonnegative Integers) 7.4 算术表达式(Arithmetic Expressions) 7.5 递归数据型在计算机科学中的简介(Induction in Computer Science) 8 无限集(Infinite Sets) 8.1 无限基数集(Infinite Cardinality) 8.2 停止问题(The Halting Problem) 8.3 集合的逻辑(The Logic of Sets) 8.4 这些真的有效吗?(Does All This Really Work?) II 结构(Structures) Introduction 9 数论(Number Theory) 9.1 可分性(Divisibility) 9.2 最大公约数(The Greatest Common Divisor) 9.3 神秘的素数(PrimeMysteries) 9.4 算术的基本定理(The Fundamental Theorem of Arithmetic) 9.5 Alan Turing 9.6 模运算(Modular Arithmetic) 9.7 余数运算(Remainder Arithmetic) 9.8 Turing's Code (Version 2.0) 9.9 乘法逆运算和消除(Multiplicative Inverses and Cancelling) 9.10 欧拉定理(Euler's Theorem) 9.11 RSA 公钥加密(RSA Public Key Encryption) 9.12 SAT 与它有什么关系?(What has SAT got to do with it?) 9.13 参考文献(References) 10 有向图和部分排序(Directed graphs & Partial Orders) 10.1 顶点度(Vertex Degrees) 10.2 步长与路径(Walks and Paths) 10.3 临近矩阵(Adjacency Matrices) 10.4 Walk Relations 10.5 有向非循环图标和时序(Directed Acyclic Graphs & Scheduling) 10.6 局部排序(Partial Orders) 10.7 通过集合遏制表征局部排序(Representing Partial Orders by Set Containment) 10.8 线性排序(Linear Orders) 10.9 乘积排序(Product Orders) 10.10 等价关系(Equivalence Relations) 10.11 关系属性总结(Summary of Relational Properties) 11 通信网络(Communication Networks) 11.1 路由(Routing) 11.2 Routing Measures) 11.3 网络设计(Network Designs) 12 简单图(Simple Graphs) 12.1 Vertex Adjacency and Degrees) 12.2 美国性别人口统计(Sexual Demographics in America) 12.3 一些常见的图(Some Common Graphs) 12.4 同构(Isomorphism) 12.5 二部图&匹配(Bipartite Graphs & Matchings) 12.6 Coloring 12.7 Simple Walks 12.8 连接(Connectivity) 12.9 森林和树(Forests & Trees) 12.10 References 13 平面图(Planar Graphs) 13.1 在平面中绘制图(Drawing Graphs in the Plane) 13.2 平面图的定义(Definitions of Planar Graphs) 13.3 欧拉公式(Euler's Formula) 13.4 在平面图中限定边的数量(Bounding the Number of Edges in a Planar Graph) 13.5 Returning to K5 and K3;3 13.6 Coloring Planar Graphs 13.7 Classifying Polyhedra 13.8 平面图的另一种特征化(Another Characterization for Planar Graphs) III 计数(Counting) Introduction 14 逼近求和(Sums and Asymptotics) 14.1 养老金的价值(The Value of an Annuity) 14.2 幂级数求和 Sums of Powers) 14.3 逼近求和(Approximating Sums) 14.4 Hanging Out Over the Edge) 14.5 乘积(Products) 14.6 Double Trouble 14.7 渐进的符号表示(Asymptotic Notation) 15 基数法则(Cardinality Rules) 15.1 由计算另一项计算该项(Counting One Thing by Counting Another) 15.2 计算序列(Counting Sequences) 15.3 广义乘积法则(The Generalized Product Rule) 15.4 除法法则(The Division Rule) 15.5 子集计算(Counting Subsets) 15.6 重复序列(Sequences with Repetitions) 15.7 Counting Practice: Poker Hands 15.8 鸽巢原理(The Pigeonhole Principle) 15.9 包含与排斥(Inclusion-Exclusion) 15.10 组合证明(Combinatorial Proofs) 15.11 References 16 母函数(Generating Functions) 16.1 无穷级数(Infinite Series) 16.2 使用母函数进行计数(Counting with Generating Functions) 16.3 部分分式(Partial Fractions) 16.4 求解线性递归(Solving Linear Recurrences) 16.5 形式幂级数(Formal Power Series) 16.6 References IV 概率论(Probability) Introduction 17 事件和概率空间(Events and Probability Spaces) 17.1 Let's Make a Deal 17.2 四步法(The Four Step Method) 17.3 Strange Dice 17.4 生日原则(The Birthday Principle) 17.5 集合论和概率论(Set Theory and Probability) 17.6 References 18 条件概率(Conditional Probability) 18.1 Monty Hall Confusion 18.2 定义和符号(Definition and Notation) 18.3 条件概率的四步法(The Four-Step Method for Conditional Probability) 18.4 为什么树状图如此有效(Why Tree Diagrams Work) 18.5 全概法则(The Law of Total Probability) 18.6 辛普森悖论(Simpson's Paradox) 18.7 独立性(Independence) 18.8 相互独立性(Mutual Independence) 18.9 概率与置信度(Probability versus Confidence) 19 随机变量(Random Variables) 19.1 随机样本(Random Variable Examples) 19.2 独立性(Independence) 19.3 分布函数(Distribution Functions) 19.4 期望(Great Expectations) 19.5 线性期望(Linearity of Expectation) 20 平均偏差(Deviation from the Mean) 20.1 马尔可夫定理(Markov‘s Theorem) 20.2 切比雪夫定理(Chebyshev's Theorem) 20.3 方差的性质(Properties of Variance) 20.4 随机样本估计(Estimation by Random Sampling) 20.5 估计置信度(Confidence in an Estimation) 20.6 随机变量加和(Sums of Random Variables) 20.7 Really Great Expectations 21 随机步(Random Walks)
【文件预览】:
Mathematics for Computer Science 2017.pdf