HDU 2295 Radar (二分 + Dancing Links 重复覆盖模型 )

时间:2023-03-09 23:03:21
HDU 2295 Radar (二分 + Dancing Links 重复覆盖模型 )

以下转自 这里

最小支配集问题:二分枚举最小距离,判断可行性。可行性即重复覆盖模型,DLX解之。

A*的启发函数:

对当前矩阵来说,选择一个未被控制的列,很明显该列最少需要1个行来控制,所以ans++。

该列被控制后,把它所对应的行,全部设为已经选择,并把这些行对应的列也设为被控制。继续选择未被控制的列,直到没有这样的列。

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm> using namespace std; const double eps = 1e-;
const int INF = << ;
const int MAXN = ; struct Point
{
double x, y;
Point( double x = , double y = ):x(x), y(y) { }
void readPoint()
{
scanf( "%lf%lf", &x, &y );
return;
}
}; Point city[MAXN];
Point radar[MAXN]; int N, M, K;
int L[MAXN*MAXN], R[MAXN*MAXN];
int U[MAXN*MAXN], D[MAXN*MAXN];
int C[MAXN*MAXN], cnt[MAXN];
bool mx[MAXN][MAXN];
bool vis[MAXN];
int head; void Remove( int c )
{
for ( int i = D[c]; i != c; i = D[i] )
{
R[ L[i] ] = R[i];
L[ R[i] ] = L[i];
}
return;
} void Resume( int c )
{
for ( int i = D[c]; i != c; i = D[i] )
{
R[ L[i] ] = i;
L[ R[i] ] = i;
}
return;
} //估价函数:至少还需要选择几个雷达
int h()
{
memset( vis, false, sizeof(vis) );
int res = ;
for ( int c = R[head]; c != head; c = R[c] )
{
if ( !vis[c] )
{
++res;
for ( int i = D[c]; i != c; i = D[i] )
for ( int j = R[i]; j != i; j = R[j] )
vis[ C[j] ] = true;
}
}
return res;
} bool DFS( int dep )
{
if ( R[head] == head ) return true;
if ( dep + h() > K ) return false;
int minv = INF, c; for ( int i = R[head]; i != head; i = R[i] )
{
if ( cnt[i] < minv )
{
minv = cnt[i];
c = i;
}
} for ( int i = D[c]; i != c; i = D[i] )
{
Remove(i);
for ( int j = R[i]; j != i; j = R[j] )
{
Remove(j);
--cnt[ C[j] ];
}
if ( DFS( dep + ) ) return true;
for ( int j = R[i]; j != i; j = R[j] )
{
Resume(j);
++cnt[ C[j] ];
}
Resume(i);
} return false;
} bool build()
{
head = ;
for ( int i = ; i < N; ++i )
{
R[i] = i + ;
L[i + ] = i;
}
R[N] = ;
L[] = N; //列链表
for ( int j = ; j <= N; ++j )
{
int pre = j;
cnt[j] = ;
for ( int i = ; i <= M; ++i )
{
if ( mx[i][j] )
{
++cnt[j];
int cur = i * N + j;
D[pre] = cur;
U[cur] = pre;
C[cur] = j;
pre = cur;
}
}
U[j] = pre;
D[pre] = j;
if ( !cnt[j] ) return false;
} for ( int i = ; i <= M; ++i )
{
int pre = -;
int first = -;
for ( int j = ; j <= N; ++j )
{
if ( mx[i][j] )
{
int cur = i * N + j;
if ( pre == - ) first = cur;
else
{
R[pre] = cur;
L[cur] = pre;
}
pre = cur;
}
}
if ( first != - )
{
L[first] = pre;
R[pre] = first;
}
}
return true;
} /*************以上DLX模板***************/ double PointDis( Point a, Point b )
{
return sqrt( (a.x - b.x)*(a.x - b.x) + (a.y - b.y)*(a.y - b.y) );
} int dcmp( double x ) //控制精度
{
if ( fabs(x) < eps ) return ;
else return x < ? - : ;
} bool check( double mid )
{
memset( mx, false, sizeof(mx) ); for ( int i = ; i <= M; ++i )
for ( int j = ; j <= N; ++j )
{
if ( dcmp( PointDis( radar[i], city[j] ) - mid ) < )
mx[i][j] = true;
} if ( build() ) return DFS();
return false;
} double solved()
{
double l = 0.0;
double r = 1500.0;
double ans;
while ( dcmp( r - l ) > )
{
double mid = (l + r) / 2.0;
if ( check( mid ) )
{
r = mid;
ans = mid;
}
else l = mid;
}
return ans;
} int main()
{
int T;
scanf( "%d", &T );
while ( T-- )
{
scanf( "%d%d%d", &N, &M, &K );
for( int i = ; i <= N; ++i )
city[i].readPoint();
for ( int i = ; i <= M; ++i )
radar[i].readPoint(); printf( "%.6f\n", solved() );
}
return ;
}