bzoj 4767 两双手 - 动态规划 - 容斥原理

时间:2023-03-09 21:17:42
bzoj 4767 两双手 - 动态规划 - 容斥原理

题目传送门

  传送门I

  传送门II

题目大意

  一个无限大的棋盘上有一只马,设马在某个时刻的位置为$(x, y)$, 每次移动可以将马移动到$(x + A_x, y + A_y)$或者$(x + B_x, y + B_y)$。棋盘上有$n$个禁止位置不能经过,问马从$(0, 0)$走到$(E_x, E_y)$的方案数。

  容斥是显然的。

  每确定经过$k$个禁止位置的方案数的容斥系数是$(-1)^{k}$。

  考虑带上容斥系数来动态规划,

  注意到去掉重复的禁止位置后,$(0, 0), (E_x, E_y)$以及禁止位置构成了一个DAG。

  容斥相当于求从$(0, 0)$到$(E_x, E_y)$的经过偶数个禁止位置的路径数减去经过奇数个禁止位置的路径数。

  直接动态规划计数就好了。

Code

 /**
* bzoj
* Problem#4767
* Accepted
* Time: 333ms
* Memory: 10716k
*/
#include <iostream>
#include <cassert>
#include <cstdlib>
#include <cstdio>
#include <queue>
#include <set>
using namespace std;
typedef bool boolean; const int N = , M = 1e9 + , D = 1e6 + ; int add(int a, int b) {
return ((a += b) >= M) ? (a - M) : (a);
} int sub(int a, int b) {
return ((a -= b) < ) ? (a + M) : (a);
} int mul(int a, int b) {
return a * 1ll * b % M;
} #define pii pair<int, int>
#define fi first
#define sc second void exgcd(int a, int b, int& x, int& y) {
if (!b)
x = , y = ;
else {
exgcd(b, a % b, y, x);
y -= (a / b) * x;
}
} int inv(int a, int n) {
int x, y;
exgcd(a, n, x, y);
return (x < ) ? (x + n) : (x);
} int fac[D], _fac[D]; inline void prepare() {
fac[] = ;
for (int i = ; i < D; i++)
fac[i] = mul(fac[i - ], i);
_fac[D - ] = inv(fac[D - ], M);
for (int i = D; --i; )
_fac[i - ] = mul(_fac[i], i);
} int comb(int n, int m) {
if (n < m)
return ;
return mul(fac[n], mul(_fac[n - m], _fac[m]));
} boolean Solve(int a1, int b1, int a2, int b2, int c1, int c2, pii& sol) {
int d = c2 * a1 - a2 * c1, f = a1 * b2 - a2 * b1;
if (d % f)
return false;
sol.sc = d / f;
if (a1) {
d = c1 - b1 * sol.sc;
if (d % a1)
return false;
sol.fi = d / a1;
} else {
d = c2 - b2 * sol.sc;
if (d % a2)
return false;
sol.fi = d / a2;
}
return sol.fi >= && sol.sc >= ;
} int n, Ex, Ey;
int Ax, Ay, Bx, By;
pii ps[N];
int deg[N];
set<pii> s;
boolean g[N][N]; //#define _DEBUG_
#ifdef _DEBUG_
FILE* fin = fopen("6.in", "r");
#else
FILE* fin = stdin;
#endif boolean Solve(pii ps, pii pt, pii& sol) {
return Solve(Ax, Bx, Ay, By, pt.fi - ps.fi, pt.sc - ps.sc, sol);
} inline void init() {
fscanf(fin, "%d%d%d", &Ex, &Ey, &n);
fscanf(fin, "%d%d%d%d", &Ax, &Ay, &Bx, &By);
for (int i = ; i <= n; i++) {
fscanf(fin, "%d%d", &ps[i].fi, &ps[i].sc);
if (s.count(ps[i]))
i--, n--;
s.insert(ps[i]);
}
} int f[N];
queue<int> que;
inline void solve() {
int t = n + ;
pii p, S(, ), T(Ex, Ey);
ps[] = S, ps[t] = T;
for (int i = ; i <= n; i++)
if (Solve(S, ps[i], p))
g[][i] = true, deg[i]++;
for (int i = ; i <= n; i++)
for (int j = ; j <= n; j++)
if ((i ^ j) && Solve(ps[i], ps[j], p))
g[i][j] = true, deg[j]++, assert(!g[j][i]);
for (int i = ; i <= n; i++)
if (Solve(ps[i], T, p))
g[i][t] = true, deg[t]++;
if (Solve(S, T, p))
g[][t] = true, deg[t]++; f[] = ;
que.push();
while (!que.empty()) {
int e = que.front();
que.pop();
for (int i = ; i <= t; i++) {
if (!g[e][i])
continue;
Solve(ps[e], ps[i], p);
if (i && i != t)
f[i] = sub(f[i], mul(f[e], comb(p.fi + p.sc, p.fi)));
else
f[i] = add(f[i], mul(f[e], comb(p.fi + p.sc, p.fi)));
if (!(--deg[i]))
que.push(i);
}
}
// for (int i = 1; i <= n; i++)
// assert(!deg[i]);
// if (deg[i])
// cerr << i << " " << ps[i].fi << " " << ps[i].sc << endl;
printf("%d\n", f[t]);
} int main() {
prepare();
init();
solve();
return ;
}