
PSNR 的公式很容易搜到。
http://www.360doc.com/content/12/0605/21/4129998_216244993.shtml
http://blog.sina.com.cn/s/blog_455c7a600101ytgo.html
峰值信噪比经常用作图像压缩等领域中信号重建质量的测量方法,它常简单地通过均方差(MSE)进行定义。两个m×n单色图像I和K,如果一个为另外一个的噪声近似,那么它们的的均方差定义为:
峰值信噪比定义为:
代码实现(参考:http://*.com/questions/29428308/snr-of-an-image-in-c-using-opencv)
double getPSNR(const Mat& I1, const Mat& I2)
{
Mat s1;
absdiff(I1, I2, s1); // |I1 - I2|
s1.convertTo(s1, CV_32F); // cannot make a square on 8 bits
s1 = s1.mul(s1); // |I1 - I2|^2 Scalar s = sum(s1); // sum elements per channel double sse = s.val[] + s.val[] + s.val[]; // sum channels if( sse <= 1e-) // for small values return zero
return ;
else
{
double mse =sse /(double)(I1.channels() * I1.total());
double psnr = 10.0*log10((*)/mse);
return psnr;
}
}
SNR 不太好搜。
http://cg2010studio.com/2014/12/10/opencv-snr-%E8%88%87-psnr/
http://blog.****.net/lien0906/article/details/30059747
SNR (Signal to Noise Ratio):訊號雜訊比,簡稱訊雜比。
PSNR (Peak Signal to Noise Ratio):也是訊雜比,只是訊號部分的值通通改用該訊號度量的最大值。以訊號度量範圍為 0 到 255 當作例子來計算 PSNR 時,訊號部分均當成是其能夠度量的最大值,也就是 255,而不是原來的訊號。
代码实现(参考:http://cg2010studio.com/2014/12/10/opencv-snr-%E8%88%87-psnr/)
/**
Theme: SNR (Signal to Noise Ratio) & PSNR (Peak Signal to Noise Ratio)
compiler: Dev C++ 4.9.9.2
Library: OpenCV 2.0
Date: 103/12/10
Author: HappyMan
Blog: https://cg2010studio.wordpress.com/
*/
#include <cv.h>
#include <highgui.h>
#include<iostream> using namespace std; int main(){
IplImage *src1= cvLoadImage("moon_o.BMP");
IplImage *src2= cvLoadImage("moon_m.BMP"); long long int sigma = ;
long long int squre = ;
double MSE = 0.0;
double SNR = 0.0;
double PSNR = 0.0;
int frameSize = src1->height*src1->width*;
int blue1=, blue2=;
int green1=, green2=;
int red1=, red2=; // width x height -> [height][width]
for(int i=;i<src1->height;i++){
for(int j=;j<src1->widthStep;j=j+){
blue1=(int)(uchar)src1->imageData[i*src1->widthStep+j];//Blue
green1=(int)(uchar)src1->imageData[i*src1->widthStep+j+];//Green
red1=(int)(uchar)src1->imageData[i*src1->widthStep+j+];//Red
blue2=(int)(uchar)src2->imageData[i*src2->widthStep+j];//Blue
green2=(int)(uchar)src2->imageData[i*src2->widthStep+j+];//Green
red2=(int)(uchar)src2->imageData[i*src2->widthStep+j+];//Red
sigma+=(blue1-blue2)*(blue1-blue2)+
(green1-green2)*(green1-green2)+
(red1-red2)*(red1-red2);
squre += blue1*blue1 + green1*green1 + red1*red1;
}
}
MSE=sigma/(double)frameSize;
PSNR=*log10(*/MSE);
SNR = *log10(squre/sigma); cout<<"sigma: "<<sigma<<endl;;
cout<<"MSE: "<<MSE<<endl;;
cout<<"PSNR: "<<PSNR<<endl;;
cout<<"SNR: "<<SNR<<endl;; system("pause");
cvWaitKey();
return EXIT_SUCCESS;
}