康托(Cantor)展开

时间:2023-03-09 21:31:15
康托(Cantor)展开

直接进入正题。

康托展开

Description

现在有"ABCDEFGHIJ”10个字符,将其所有的排列中按字典序排列,给出任意一种排列,说出这个排列在所有的排列中是第几小的?

Input

第一行有一个整数n(0<n<=100000);

随后有n行,每行是一个排列;

Output

输出一个整数m,占一行,m表示排列是第几位;

Sample Input
3
ABCDEFGHIJ
HGEBFACDJI
GDEDHJBXIA
Sample Output
1
2803322
1911924
其实思路可能不用说也能想出来
设总长度为len,枚举每一个字母,找它后面比它小的字母个数,记为k。那么每一位的答案就是k*(len-i)!。
下面给出草率证明:
先举个栗子,比如说一个字符串BACED。(样例太长懒得解释)
第一位B找到了A一个比它小的字母,说明这个字符串排在所有以A开头的字符串之后(显然共有4!个),所以B对最终答案的贡献是4!。
第二位A没找到比它小的字母,说明这个字符是所有以B开头的字符串中第二位最小的,所以B对最终答案没有贡献。
第三位C没找到比它小的字母,说明这个字符是所有以BA开头的字符串中第二位最小的,所以C对最终答案没有贡献。
第四位E找到了E一个比它小的字母,说明这个字符串排在所有以BACD开头的字符串之后(显然共有1!个),所以E对最终答案的贡献是1!。
第五位D没找到比它小的字母,说明这个字符是所有以BACE开头的字符串中第二位最小的,所以D对最终答案没有贡献。
又因为第一个字符串排名为1,所以所有字符串排名都应加1。
所以答案是1+4!+1!=26;
放代码,算是很短的。
 1 #include<bits/stdc++.h>
2 using namespace std;
3
4 int n,f[19];
5 int main(){
6 scanf("%d",&n);
7 f[0]=1;//注意
8 for(int i=1;i<=10;i++) f[i]=f[i-1]*i;//预处理阶乘
9 while(n--)//数据组数
10 {
11 int ans=1;//每个字符串排名都加1,上面有提到
12 string s;
13 cin>>s;
14 int len=s.length();//取字符串长度
15 for(int i=0;i<len;i++)
16 {
17 int k=0;
18 for(int j=i+1;j<len;j++)
19 if(s[i]>s[j]) k++;//记录在当前字符之后有几个比当前字符小的
20 ans+=k*f[len-i-1];//注意i从0开始,所以是len-i-1
21 }
22 printf("%d\n",ans);
23 }
24 return 0;
25 }

但是时间复杂度达到了len2(当然这里len只有11,除了穷举都能过)

但如果是这道题呢?(参考洛谷P5637)

P5367 【模板】康托展开

题目描述

求1∼N的一个给定全排列在所有1∼N全排列中的排名。结果对998244353取模。

输入格式

第一行一个正整数N。

第二行N个正整数,表示1∼N的一种全排列。

输出格式

一行一个非负整数,表示答案对9982443539取模的值。

输入输出样例

输入 #1 
3
2 1 3
输出 #1 
3
输入 #2 
4
1 2 4 3
输出 #2 
2

说明/提示

对于10%数据,1≤N≤10。

对于50%数据,1≤N≤5000。

对于100%数据,1≤N≤1000000

如果用传统的康托展开做,时间复杂度O(n2),只能拿50分。

我们考虑用数据结构维护每个数后面的它小的数的个数,自然而然想到了权值线段树(其实是我不会树状数组)。

线段树的叶子节点维护的是该叶子结点所对应的编号出现的次数(我也说不清楚,具体看代码)。首先插入所有数,随后第i次找1到a[i]-1区间内的和,做完之后删除这个数,防止后面的数重复记录产生错误答案。时间复杂度O(logn)。

上代码:

 #include<bits/stdc++.h>//随时记得取模,尽可能降低WA的概率
#define P 998244353
#define N 1000009
using namespace std; int n,ans=,a[N],sum[N<<];
long long f[N];//这道题内存限制只有31.25MB,第一次全开了long long发现MLE,第二次全开了int爆WA,最后部分开了long long才压内存过
void Update(int rt,int l,int r,int x,int c,int fg)//fg是flag,标记
{
if(l==r && l==x)
{
if(fg==) sum[rt]+=c;//如果是插入,sum就加c
else sum[rt]-=c;//如果是删除,sum就减c
return;
}
int mid=(l+r)>>;
if(x<=mid) Update(rt<<,l,mid,x,c,fg);
else Update(rt<<|,mid+,r,x,c,fg);
sum[rt]=sum[rt<<]+sum[rt<<|];
} int Query(int rt,int l,int r,int x,int y)
{
if(l==x && r==y) return sum[rt];
int mid=(l+r)>>;
if(y<=mid) return Query(rt<<,l,mid,x,y);
else if(x>mid) return Query(rt<<|,mid+,r,x,y);
else return Query(rt<<,l,mid,x,mid)+Query(rt<<|,mid+,r,mid+,y);
}
int main(){
memset(sum,,sizeof(sum));
scanf("%d",&n);
f[]=;//注意
for(int i=;i<=;i++) f[i]=f[i-]%P*i%P;//计算阶乘
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
Update(,,n,a[i],,);//将每一个数插入到权值线段树中
}
for(int i=;i<=n;i++)
{
if(a[i]==)//如果a[i]==1,那么该数一定对答案没有贡献,直接删除
{
Update(,,n,a[i],,);
continue;
}
ans=(ans+Query(,,n,,a[i]-)%P*f[n-i]%P)%P;//更新答案
Update(,,n,a[i],,);//删除这个数
}
printf("%d\n",(ans+P)%P);
return ;
}