![BZOJ 5039: [Jsoi2014]序列维护 BZOJ 5039: [Jsoi2014]序列维护](https://image.shishitao.com:8440/aHR0cHM6Ly9ia3FzaW1nLmlrYWZhbi5jb20vdXBsb2FkL2NoYXRncHQtcy5wbmc%2FIQ%3D%3D.png?!?w=700&webp=1)
5039: [Jsoi2014]序列维护
Time Limit: 20 Sec Memory Limit: 256 MB
Submit: 282 Solved: 169
[Submit][Status][Discuss]
Description
JYY 有一个维护数列的任务。 他希望你能够来帮助他完成。
JYY 现在有一个长度为 N 的序列 a1,a2,…,aN,有如下三种操作:
1、 把数列中的一段数全部乘以一个值;
2、 把数列中的一段数全部加上一个值;
3、 询问序列中的一段数的和。
由于答案可能很大,对于每个询问,你只需要告诉 JYY 这个询问的答案对 P
取模的结果即可。
Input
第一行包含两个正整数, N 和 P;
第二行包含 N 个非负整数,从左到右依次为 a1,a2,…,aN。
第三行有一个整数 M,表示操作总数。
接下来 M 行,每行满足如下三种形式之一:
1、“ 1 t g c”(不含引号)。表示把所有满足 t ≤ i ≤ g 的 ai 全部乘以 c;
2、“ 2 t g c”(不含引号)。表示把所有满足 t ≤ i ≤ g 的 ai 全部加上 c;
3、“ 3 t g”(不含引号)。表示询问满足 t ≤ i ≤ g 的 ai 的和对 P 取模的值。
1 ≤ N,M ≤ 10^5, 1 ≤ P, c, ai ≤ 2*10^9, 1 ≤ t ≤ g ≤ N
Output
对于每个以 3 开头的操作,依次输出一行,包含对应的结果。
Sample Input
7 43
1 2 3 4 5 6 7
5
1 2 5 5
3 2 4
2 3 7 9
3 1 3
3 4 7
1 2 3 4 5 6 7
5
1 2 5 5
3 2 4
2 3 7 9
3 1 3
3 4 7
Sample Output
2
35
8
【样例说明】
初始时数列为(1,2,3,4,5,6,7)。
经过第 1 次操作后,数列为(1,10,15,20,25,6,7)。
对第 2 次操作,和为 10+15+20=45,模 43 的结果是 2。
经过第 3 次操作后,数列为(1,10,24,29,34,15,16}
对第 4 次操作,和为 1+10+24=35,模 43 的结果是 35。
对第 5 次操作,和为 29+34+15+16=94,模 43 的结果是 8。
35
8
【样例说明】
初始时数列为(1,2,3,4,5,6,7)。
经过第 1 次操作后,数列为(1,10,15,20,25,6,7)。
对第 2 次操作,和为 10+15+20=45,模 43 的结果是 2。
经过第 3 次操作后,数列为(1,10,24,29,34,15,16}
对第 4 次操作,和为 1+10+24=35,模 43 的结果是 35。
对第 5 次操作,和为 29+34+15+16=94,模 43 的结果是 8。
不就是个线段树模板吗QAQ,然后。。。。。
![BZOJ 5039: [Jsoi2014]序列维护 BZOJ 5039: [Jsoi2014]序列维护](https://image.shishitao.com:8440/aHR0cHM6Ly9pbWFnZXMyMDE4LmNuYmxvZ3MuY29tL2Jsb2cvMTIxNTgzOS8yMDE4MDMvMTIxNTgzOS0yMDE4MDMxMTIwMzgzNjMyMC0xMjU1MDM5MzA1LnBuZw%3D%3D.png?w=700&webp=1)
/**************************************************************
Problem: 5039
User: Hammer_cwz_77
Language: C++
Result: Accepted
Time:6100 ms
Memory:10276 kb
****************************************************************/ #include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
LL mod;
struct node
{
int l,r,lc,rc;
LL c;
LL mul,add;
bool lazy;
node(){lazy=false;}
}tr[];int trlen;
int n,m;int x[];
void bt(int l,int r)
{
int now=++trlen;
tr[now].l=l;tr[now].r=r;
tr[now].lc=tr[now].rc=-;tr[now].c=;
tr[now].mul=;tr[now].add=;
if(l==r){tr[now].c=x[l]%mod;return ;}
if(l<r)
{
int mid=(l+r)/;
tr[now].lc=trlen+; bt(l,mid);
tr[now].rc=trlen+; bt(mid+,r);
}
tr[now].c=tr[tr[now].lc].c+tr[tr[now].rc].c;
}
void lazy(int x)
{
int lc=tr[x].lc,rc=tr[x].rc;
int l=tr[x].l,r=tr[x].r;int mid=(l+r)/;
if(lc!=-)
{
tr[lc].c=(tr[lc].c*tr[x].mul)%mod;
tr[lc].c=(tr[lc].c+tr[x].add*(mid-l+))%mod;
tr[lc].mul=(tr[lc].mul*tr[x].mul)%mod;
tr[lc].add=(tr[lc].add*tr[x].mul)%mod;
tr[lc].add=(tr[lc].add+tr[x].add)%mod;
}
if(rc!=-)
{
tr[rc].c=(tr[rc].c*tr[x].mul)%mod;
tr[rc].c=(tr[rc].c+tr[x].add*(r-mid))%mod;
tr[rc].mul=(tr[rc].mul*tr[x].mul)%mod;
tr[rc].add=(tr[rc].add*tr[x].mul)%mod;
tr[rc].add=(tr[rc].add+tr[x].add)%mod;
}
tr[x].mul=;tr[x].add=;
}
void change_x(int now,int l,int r,LL c)//l~r +c
{
if(tr[now].l==l && tr[now].r==r)
{
tr[now].c=(tr[now].c+(r-l+)*c)%mod;
tr[now].add=(tr[now].add+c)%mod;
return ;
}
int lc=tr[now].lc,rc=tr[now].rc;
int mid=(tr[now].l+tr[now].r)/;
lazy(now);
if(r<=mid)change_x(lc,l,r,c);
else if(mid+<=l)change_x(rc,l,r,c);
else
{
change_x(lc,l,mid,c);
change_x(rc,mid+,r,c);
}
tr[now].c=(tr[lc].c+tr[rc].c)%mod;
}
void change_a(int now,int l,int r,LL c)//l~r *c
{
if(tr[now].l==l && tr[now].r==r)
{
tr[now].c=(tr[now].c*c)%mod;
tr[now].mul=(tr[now].mul*c)%mod;
tr[now].add=(tr[now].add*c)%mod;
return ;
}
int lc=tr[now].lc,rc=tr[now].rc;
int mid=(tr[now].l+tr[now].r)/;
lazy(now);
if(r<=mid)change_a(lc,l,r,c);
else if(mid+<=l)change_a(rc,l,r,c);
else
{
change_a(lc,l,mid,c);
change_a(rc,mid+,r,c);
}
tr[now].c=(tr[lc].c+tr[rc].c)%mod;
}
LL findsum(int now,int l,int r)
{
if(tr[now].l==l && tr[now].r==r)
{
lazy(now);
return tr[now].c%mod;
}
int lc=tr[now].lc,rc=tr[now].rc;
int mid=(tr[now].l+tr[now].r)/;
lazy(now);
if(r<=mid)return findsum(lc,l,r);
else if(mid+<=l)return findsum(rc,l,r);
else return ((findsum(lc,l,mid)%mod+findsum(rc,mid+,r)%mod)%mod);
}
int main()
{
scanf("%d%lld",&n,&mod);
for(int i=;i<=n;i++)scanf("%d",&x[i]);
trlen=;bt(,n);
scanf("%d",&m);
while(m--)
{
int q,t,g;LL c;
scanf("%d%d%d",&q,&t,&g);
if(q==){printf("%lld\n",findsum(,t,g)%mod);continue;}
scanf("%lld",&c);
if(q==)change_a(,t,g,c);
else change_x(,t,g,c);
}
return ;
}
---恢复内容结束---