本示例的过程是:
1. 音频转文本
2. 利用文本获取情感倾向分析结果
3. 利用文本获取关键词提取
首先是讯飞的语音识别模块。在这里可以找到非实时语音转写的相关文档以及 Python 示例。我略作了改动,让它可以对不同人说话作区分,并且作了一些封装。
语音识别功能
weblfasr_python3_demo.py 文件:
1 #!/usr/bin/env python 2 # -*- coding: utf-8 -*- 3 """ 4 讯飞非实时转写调用demo(语音识别) 5 """ 6 import base64 7 import hashlib 8 import hmac 9 import json 10 import os 11 import time 12 13 import requests 14 15 lfasr_host = \'http://raasr.xfyun.cn/api\' 16 17 # 请求的接口名 18 api_prepare = \'/prepare\' 19 api_upload = \'/upload\' 20 api_merge = \'/merge\' 21 api_get_progress = \'/getProgress\' 22 api_get_result = \'/getResult\' 23 # 文件分片大下52k 24 file_piece_sice = 10485760 25 26 # ——————————————————转写可配置参数———————————————— 27 # 参数可在官网界面(https://doc.xfyun.cn/rest_api/%E8%AF%AD%E9%9F%B3%E8%BD%AC%E5%86%99.html)查看,根据需求可自行在gene_params方法里添加修改 28 # 转写类型 29 lfasr_type = 0 30 # 是否开启分词 31 has_participle = \'false\' 32 has_seperate = \'true\' 33 # 多候选词个数 34 max_alternatives = 0 35 # 子用户标识 36 suid = \'\' 37 38 39 class SliceIdGenerator: 40 """slice id生成器""" 41 42 def __init__(self): 43 self.__ch = \'aaaaaaaaa`\' 44 45 def getNextSliceId(self): 46 ch = self.__ch 47 j = len(ch) - 1 48 while j >= 0: 49 cj = ch[j] 50 if cj != \'z\': 51 ch = ch[:j] + chr(ord(cj) + 1) + ch[j + 1:] 52 break 53 else: 54 ch = ch[:j] + \'a\' + ch[j + 1:] 55 j = j - 1 56 self.__ch = ch 57 return self.__ch 58 59 60 class RequestApi(object): 61 def __init__(self, appid, secret_key, upload_file_path): 62 self.appid = appid 63 self.secret_key = secret_key 64 self.upload_file_path = upload_file_path 65 66 # 根据不同的apiname生成不同的参数,本示例中未使用全部参数您可在官网(https://doc.xfyun.cn/rest_api/%E8%AF%AD%E9%9F%B3%E8%BD%AC%E5%86%99.html)查看后选择适合业务场景的进行更换 67 def gene_params(self, apiname, taskid=None, slice_id=None): 68 appid = self.appid 69 secret_key = self.secret_key 70 upload_file_path = self.upload_file_path 71 ts = str(int(time.time())) 72 m2 = hashlib.md5() 73 m2.update((appid + ts).encode(\'utf-8\')) 74 md5 = m2.hexdigest() 75 md5 = bytes(md5, encoding=\'utf-8\') 76 # 以secret_key为key, 上面的md5为msg, 使用hashlib.sha1加密结果为signa 77 signa = hmac.new(secret_key.encode(\'utf-8\'), md5, hashlib.sha1).digest() 78 signa = base64.b64encode(signa) 79 signa = str(signa, \'utf-8\') 80 file_len = os.path.getsize(upload_file_path) 81 file_name = os.path.basename(upload_file_path) 82 param_dict = {} 83 84 if apiname == api_prepare: 85 # slice_num是指分片数量,如果您使用的音频都是较短音频也可以不分片,直接将slice_num指定为1即可 86 slice_num = int(file_len / file_piece_sice) + (0 if (file_len % file_piece_sice == 0) else 1) 87 param_dict[\'app_id\'] = appid 88 param_dict[\'signa\'] = signa 89 param_dict[\'ts\'] = ts 90 param_dict[\'file_len\'] = str(file_len) 91 param_dict[\'file_name\'] = file_name 92 param_dict[\'slice_num\'] = str(slice_num) 93 elif apiname == api_upload: 94 param_dict[\'app_id\'] = appid 95 param_dict[\'signa\'] = signa 96 param_dict[\'ts\'] = ts 97 param_dict[\'task_id\'] = taskid 98 param_dict[\'slice_id\'] = slice_id 99 elif apiname == api_merge: 100 param_dict[\'app_id\'] = appid 101 param_dict[\'signa\'] = signa 102 param_dict[\'ts\'] = ts 103 param_dict[\'task_id\'] = taskid 104 param_dict[\'file_name\'] = file_name 105 elif apiname == api_get_progress or apiname == api_get_result: 106 param_dict[\'app_id\'] = appid 107 param_dict[\'signa\'] = signa 108 param_dict[\'ts\'] = ts 109 param_dict[\'task_id\'] = taskid 110 param_dict[\'has_seperate\'] = has_seperate 111 return param_dict 112 113 # 请求和结果解析,结果中各个字段的含义可参考:https://doc.xfyun.cn/rest_api/%E8%AF%AD%E9%9F%B3%E8%BD%AC%E5%86%99.html 114 def gene_request(self, apiname, data, files=None, headers=None): 115 response = requests.post(lfasr_host + apiname, data=data, files=files, headers=headers) 116 result = json.loads(response.text) 117 if result["ok"] == 0: 118 # print("{} success:".format(apiname) + str(result)) 119 print(\'treating...\') 120 return result 121 else: 122 # print("{} error:".format(apiname) + str(result)) 123 exit(0) 124 return result 125 126 # 预处理 127 def prepare_request(self): 128 return self.gene_request(apiname=api_prepare, 129 data=self.gene_params(api_prepare)) 130 131 # 上传 132 def upload_request(self, taskid, upload_file_path): 133 file_object = open(upload_file_path, \'rb\') 134 try: 135 index = 1 136 sig = SliceIdGenerator() 137 while True: 138 content = file_object.read(file_piece_sice) 139 if not content or len(content) == 0: 140 break 141 files = { 142 "filename": self.gene_params(api_upload).get("slice_id"), 143 "content": content 144 } 145 response = self.gene_request(api_upload, 146 data=self.gene_params(api_upload, taskid=taskid, 147 slice_id=sig.getNextSliceId()), 148 files=files) 149 if response.get(\'ok\') != 0: 150 # 上传分片失败 151 print(\'upload slice fail, response: \' + str(response)) 152 return False 153 # print(\'upload slice \' + str(index) + \' success\') 154 print(\'treating...\') 155 index += 1 156 finally: 157 \'file index:\' + str(file_object.tell()) 158 file_object.close() 159 return True 160 161 # 合并 162 def merge_request(self, taskid): 163 return self.gene_request(api_merge, data=self.gene_params(api_merge, taskid=taskid)) 164 165 # 获取进度 166 def get_progress_request(self, taskid): 167 return self.gene_request(api_get_progress, data=self.gene_params(api_get_progress, taskid=taskid)) 168 169 # 获取结果 170 def get_result_request(self, taskid): 171 return self.gene_request(api_get_result, data=self.gene_params(api_get_result, taskid=taskid)) 172 173 def all_api_request(self): 174 # 1. 预处理 175 pre_result = self.prepare_request() 176 taskid = pre_result["data"] 177 # 2 . 分片上传 178 self.upload_request(taskid=taskid, upload_file_path=self.upload_file_path) 179 # 3 . 文件合并 180 self.merge_request(taskid=taskid) 181 # 4 . 获取任务进度 182 while True: 183 # 每隔20秒获取一次任务进度 184 progress = self.get_progress_request(taskid) 185 progress_dic = progress 186 if progress_dic[\'err_no\'] != 0 and progress_dic[\'err_no\'] != 26605: 187 # print(\'task error: \' + progress_dic[\'failed\']) 188 return 189 else: 190 data = progress_dic[\'data\'] 191 task_status = json.loads(data) 192 if task_status[\'status\'] == 9: 193 # print(\'task \' + taskid + \' finished\') 194 break 195 print(\'The task \' + taskid + \' is in processing, task status: \' + str(data)) 196 print(\'processing...\') 197 # 每次获取进度间隔20S 198 time.sleep(20) 199 # 5 . 获取结果 200 return self.get_result_request(taskid=taskid) 201 202 203 def get_text_result(upload_file_path): 204 """ 205 封装该接口,获取接口返回的内容 206 :param upload_file_path: 207 :return: 识别出来的文本数据 208 """ 209 api = RequestApi(appid="xxx", secret_key="xxx", upload_file_path=upload_file_path) 210 return api.all_api_request() 211 212 213 # 注意:如果出现requests模块报错:"NoneType" object has no attribute \'read\', 请尝试将requests模块更新到2.20.0或以上版本(本demo测试版本为2.20.0) 214 # 输入讯飞开放平台的appid,secret_key和待转写的文件路径 215 if __name__ == \'__main__\': 216 result = get_text_result(\'input/xxx.m4a\') 217 print(result) 218 print(type(result))
appid 和 secret_key 需要你自己申请之后,配置上去。
配置好之后填写需要输入的音频,就可以运行该脚本作测试。
python weblfasr_python3_demo.py treating... treating... treating... treating... treating... The task e3e3284aee4a4e3b86a4fd506960e0f2 is in processing, task status: {"status":2,"desc":"音频并完成"} processing... treating... The task e3e3284aee4a4e3b86a4fd506960e0f2 is in processing, task status: {"status":3,"desc":"音频写中"} processing... treating... treating... {\'data\': \'[{"bg":"480","ed":"1810","onebest":"我好高兴!","speaker":"2"},{"bg":"1820","ed":"4440ebest":"啊明天就放假了!","speaker":"1"}]\', \'err_no\': 0, \'failed\': None, \'ok\': 0} <class \'dict\'>
情感倾向分析功能
这里是百度情感倾向分析的文档,可以选择 Python SDK 或者 API 接口,我选择的是 API 接口。并且我对它进行了一定程度的封装。
baidu_sentiment.py 文件有如下代码:
1 #!/usr/bin/env python 2 # -*- coding: utf-8 -*- 3 """ 4 百度情感倾向分析: 5 get_sentiment_result 用于 demo 进行调用 6 # 参数 说明 描述 7 # log_id uint64 请求唯一标识码 8 # sentiment int 表示情感极性分类结果,0:负向,1:中性,2:正向 9 # confidence float 表示分类的置信度,取值范围[0,1] 10 # positive_prob float 表示属于积极类别的概率 ,取值范围[0,1] 11 # negative_prob float 表示属于消极类别的概率,取值范围[0,1] 12 """ 13 import json 14 import requests 15 16 17 def get_sentiment_result(text): 18 """ 19 利用情感倾向分析API来获取返回数据 20 :param text: 输入文本 21 :return response: 返回的响应 22 """ 23 if text == \'\': 24 return \'\' 25 # 请求接口 26 url = \'https://aip.baidubce.com/oauth/2.0/token\' 27 # 需要先获取一个 token 28 client_id = \'xxx\' 29 client_secret = \'xxx\' 30 params = { 31 \'grant_type\': \'client_credentials\', 32 \'client_id\': client_id, 33 \'client_secret\': client_secret 34 } 35 headers = {\'Content-Type\': \'application/json; charset=UTF-8\'} 36 response = requests.post(url=url, params=params, headers=headers).json() 37 access_token = response[\'access_token\'] 38 39 # 通用版情绪识别接口 40 url = \'https://aip.baidubce.com/rpc/2.0/nlp/v1/sentiment_classify\' 41 # 定制版情绪识别接口 42 # url = \'https://aip.baidubce.com/rpc/2.0/nlp/v1/sentiment_classify_custom\' 43 # 使用 token 调用情感倾向分析接口 44 params = { 45 \'access_token\': access_token 46 } 47 payload = json.dumps({ 48 \'text\': text 49 }) 50 headers = {\'Content-Type\': \'application/json; charset=UTF-8\'} 51 response = requests.post(url=url, params=params, data=payload, headers=headers).json() 52 return response 53 54 55 if __name__ == \'__main__\': 56 print(get_sentiment_result(\'白日放歌须纵酒,青春作伴好还乡。\')) 57 print(get_sentiment_result(\'思悠悠,恨悠悠,恨到归时方始休。\'))
同样,你需要在百度创建应用,配置好你的 client_id 和 client_secret。你也可以运行该脚本进行测试。
python baidu_sentiment.py {\'log_id\': 2676765769120607830, \'text\': \'白日放歌须纵酒,青春作伴好还乡。\', \'items\': [{\'positive_prob\': 0.537741, \'confidence\': 0.245186, \'negative_prob\': 0.462259, \'sentiment\': 1}]} {\'log_id\': 4078175744151108694, \'text\': \'思悠悠,恨悠悠,恨到归时方始休。\', \'items\': [{\'positive_prob\': 0.345277, \'confidence\': 0.232717, \'negative_prob\': 0.654723, \'sentiment\': 0}]}
关键词提取功能
在这里可以找到讯飞的关键词提取的接口文档和示例代码。同样我也略作了改动,进行了封装。
WebLtp_python3_demo.py 文件代码:
1 #!/usr/bin/python 2 # -*- coding: UTF-8 -*- 3 """ 4 讯飞关键词提取接口 5 """ 6 import time 7 import urllib.request 8 import urllib.parse 9 import json 10 import hashlib 11 import base64 12 13 # 接口地址 14 url = "http://ltpapi.xfyun.cn/v1/ke" 15 # 开放平台应用ID 16 x_appid = "xxx" 17 # 开放平台应用接口秘钥 18 api_key = "xxx" 19 # 语言文本 20 TEXT = "汉皇重色思倾国,御宇多年求不得。杨家有女初长成,养在深闺人未识。天生丽质难自弃,一朝选在君王侧。" 21 22 23 def get_keyword_result(text): 24 """ 25 这是讯飞官方文档给出的示例 26 :param text: 输入文本 27 :return response: 返回对象 28 """ 29 if text == \'\': 30 return \'\' 31 body = urllib.parse.urlencode({\'text\': text}).encode(\'utf-8\') 32 param = {"type": "dependent"} 33 x_param = base64.b64encode(json.dumps(param).replace(\' \', \'\').encode(\'utf-8\')) 34 x_time = str(int(time.time())) 35 x_checksum = hashlib.md5(api_key.encode(\'utf-8\') + 36 str(x_time).encode(\'utf-8\') + 37 x_param).hexdigest() 38 x_header = {\'X-Appid\': x_appid, 39 \'X-CurTime\': x_time, 40 \'X-Param\': x_param, 41 \'X-CheckSum\': x_checksum} 42 req = urllib.request.Request(url, body, x_header) 43 result = urllib.request.urlopen(req) 44 result = result.read() 45 return result.decode(\'utf-8\') 46 47 48 if __name__ == \'__main__\': 49 keyword_result = get_keyword_result(TEXT) 50 print(keyword_result) 51 print(type(keyword_result))
配置好你的 x_appid 和 api_key。
注意:关键词提取还需要你在讯飞应用的后台设置白名单。
点击管理,配置好自己的公网 IP。试着运行一下脚本,会有如下输出:
python WebLtp_python3_demo.py {"code":"0","data":{"ke":[{"score":"0.646","word":"汉皇"},{"score":"0.634","word":"御宇"},{"score":"0.633","word":"重色"},{"score":"0.632","word":"王侧"},{"score":"0.628","word":"思倾国"},{"score":"0.601","word":"自弃"},{"score":"0.600","word":"杨家"},{"score":"0.588","word":"深闺人未识"},{"score":"0.588","word":"求不得"},{"score":"0.586","word":"天生丽质"}]},"desc":"success","sid":"ltp000aed03@dx589210907749000100"} <class \'str\'>
把所有功能组合起来
用一个 Demo 把所有功能组合起来,并把结果存储到文件中。
demo.py 如下:
1 #!/usr/bin/env python 2 # -*- coding: utf-8 -*- 3 """ 4 这是主要的demo 5 流程是: 6 音频->讯飞语音识别API->文本 7 文本再作两种处理: 8 文本->百度情绪识别API->情绪识别的响应 9 文本->讯飞关键词提取API->关键词提取的响应 10 """ 11 import sys 12 import json 13 from weblfasr_python3_demo import get_text_result 14 from baidu_sentiment import get_sentiment_result 15 from WebLtp_python3_demo import get_keyword_result 16 17 # 硬编码选定需要离线分析的音频 18 # 以下是一些测试-------------------------- 19 # SOURCE_PATH = \'input/test.mp3\' 20 # SOURCE_PATH = \'input/test.pcm\' 21 # SOURCE_PATH = \'input/test.m4a\' 22 # SOURCE_PATH = \'input/test.wav\' 23 # 以上是一些测试-------------------------- 24 # 或者,通过命令行参数选定需要离线分析的音频 25 # 如:python demo.py test.wav 26 SOURCE_PATH = \'input/\' + sys.argv[1] 27 # STEP 1: 调用讯飞语音识别 API 28 # 获取讯飞识别出来的响应 29 TEXT_RESULT = get_text_result(SOURCE_PATH) 30 31 32 def save_file(data, destin): 33 """ 34 数据持久化函数 35 :param data: 数据 36 :param destin: 目标路径 37 :return: None 38 """ 39 data = str(data) 40 if data: 41 with open(destin, "w", encoding=\'utf-8\') as f: 42 f.write(data) 43 44 45 def whole_method(): 46 """ 47 将音频文本不作区分地提取(两个人的对话不做区分) 48 :return: None 49 """ 50 # 解析语音识别出来的数据 51 data_list = json.loads(TEXT_RESULT[\'data\']) 52 # text 用于拼接 53 text_result = \'\' 54 for data in data_list: 55 text_result += data[\'onebest\'] 56 print(\'text_result:\', text_result) 57 print(\'text_result completed\') 58 # 把文本写入到文件中 59 save_file(text_result, \'output/text_result.txt\') 60 # STEP 2: 情感倾向分析 61 # 输入文本,使用情绪识别函数获取响应 62 sentiment_result = get_sentiment_result(text_result) 63 # 保存数据 64 save_file(sentiment_result, \'output/sentiment_result.txt\') 65 print(\'sentiment_result completed\') 66 # STEP 3: 关键词提取 67 # 输入文本,调用讯飞提取关键词的接口,对文本做关键词提取 68 keyword_result = get_keyword_result(text_result) 69 # 保存数据 70 save_file(keyword_result, \'output/keyword_result.txt\') 71 print(\'keyword_result completed\') 72 73 74 def seperate_method(): 75 """ 76 将音频文本作区分地提取(区分两个人的对话) 77 :return: None 78 """ 79 data_list = json.loads(TEXT_RESULT[\'data\']) 80 text_result1 = \'\' 81 text_result2 = \'\' 82 # 假设有两个人,把文本分别做整合 83 for data in data_list: 84 # print(data) 85 if data[\'speaker\'] == \'1\': 86 text_result1 += data[\'onebest\'] 87 else: 88 text_result2 += data[\'onebest\'] 89 print(\'text_result1\', text_result1) 90 print(\'text_result2\', text_result2) 91 print(\'text_result1 text_result2 completed\') 92 save_file(text_result1, \'output/text_result1.txt\') 93 save_file(text_result2, \'output/text_result2.txt\') 94 # STEP 2: 情感倾向分析 95 # 输入文本,使用情绪识别函数获取响应 96 # A 的对话 97 sentiment_result1 = get_sentiment_result(text_result1) 98 save_file(sentiment_result1, \'output/sentiment_result1.txt\') 99 print(\'result_get_result1 completed\') 100 # B 的对话 101 sentiment_result2 = get_sentiment_result(text_result2) 102 save_file(sentiment_result2, \'output/sentiment_result2.txt\') 103 print(\'result_get_result2 completed\') 104 # STEP 3: 关键词提取 105 # 调用讯飞接口做文本的关键字提取 106 # A 的对话 107 keyword_result1 = get_keyword_result(text_result1) 108 save_file(keyword_result1, \'output/keyword_result1.txt\') 109 print(\'keyword_result1 completed\') 110 # B 的对话 111 keyword_result2 = get_keyword_result(text_result2) 112 save_file(keyword_result2, \'output/keyword_result2.txt\') 113 print(\'keyword_result2 completed\') 114 115 116 if __name__ == \'__main__\': 117 if TEXT_RESULT: 118 whole_method() 119 seperate_method()
输出大致如下:
python demo.py test.mp3 treating... treating... treating... treating... treating... The task 8552d13470ed4839b11e0f3693f296f9 is in processing, task status: {"status":2,"desc":"音频合并完成"} processing... treating... ... The task 8552d13470ed4839b11e0f3693f296f9 is in processing, task status: {"status":3,"desc":"音频转写中"} processing... treating... treating... text_result: 喂喂你好,是xxx的机主是吧?谁?呀我是xxx的工作人员,您在今天中午12点多在我们xxx提交了xxx是吧?那怎么?...那没有关系,我说您是否办理xxx?什么有什么有关系,啊有什么有关系啊。 text_result completed sentiment_result completed keyword_result completed text_result1 喂喂你好,是xxx的机主是吧?呀我是xxx的工作人员,您在今天中午12点多在我们xxx提交了xxx是吧?...那没有关系,我说您是否办理xxx? text_result2 谁?那怎么?...什么有什么有关系,啊有什么有关系啊。 text_result1 text_result2 completed result_get_result1 completed result_get_result2 completed keyword_result1 completed keyword_result2 completed
原文作者:雨先生
原文链接:https://www.cnblogs.com/noluye/p/11225024.html
许可协议:知识共享署名-非商业性使用 4.0 国际许可协议