图像噪声估计算法 - AlgorithmC

时间:2024-02-22 19:12:29

Noise Estimation(噪声估计)

1、原理

    现在主流的噪声估计模型大多基于Filter-Based Approach Using Arithmetic Averaging
Filter-Based Approach Using Statistical Averaging先简单介绍一下这几种算法。

1.1、Filter-Based Approach Using Arithmetic Averaging ——Filter-Base

    该类型算法是基于因为图像边缘结构具有很强的二阶差分特性,所以图像是对Laplacian Mask的噪声统计器是敏感的,算法通过两个Laplacian Mask组成的kernel来进行卷积操作 

1.2、Filter-Based Approach Using Statistical Averaging —— Block-Base

    该算法的前期操作与1.1的算法相似,先简单的对源图进行一次Laplacian Mask 卷积,卷积核同1.1的N,

在计算局部方差前,还需要做一次边缘检测,包含边缘的块将需要被排除掉,然后通过直方图计算噪声方差,

2、算法过程

    该算法结合了上述的两种算法的优点,并进行了改进,具体算法过程如下:

首先对图像亮度过高的点和过暗的点进行剔除,避免了在亮部和暗部的统计以及误估,在这里是对[16,235]间的像素进行提取,而且如果每个块被剔除掉的像素点超过一半的话,那该块就需要被裁减掉。然后对保留下来的块进行水平方向和垂直方向的Sobel梯度操作,以及同类块检测:


3、算法改进
    3.1、对不同的图采用不同的块大小

    该算法不足之处,对所有的图片都裁切相同的像素块,但是对于一些大图,可能像素点相对小图来说,噪点密集度相对分散,而对于小图若采用过小的像素块,又会让值偏大,所以,我们对算法进行了修改,对于不同大小的图,我们采用不同的块大小,对300*300以下的图,我们采用宽度为7的块,对于300*300-800*800的图,我们采用宽度为6的块,对于大于800*800的块采用宽度为5的块。

    3.2、对图像进行缩放数据重采集

    该算法对于同样的图,进行等比例的缩放,如果噪声多的话,缩放完成后得到的噪声会相对应的增加,噪声少的话,所对应的噪声也会少,在这里,我们对数据进行缩放,进行一次重采集,对重新计算得到的数据进行辅助计算,以保证得到的最后的值保证准确性。

 

4、算法的不足

   该算法对于一些细节较为丰富的图片的检测效果仍然不是很好,这是噪声估计算法的一个较大的通病,像以下的图片的检测效果效果误差会偏大。


转载请注明出处——陈先生


posted on 2014-11-18 15:39  AlgorithmC  阅读(15670)  评论(1编辑  收藏  举报