linux 内核的几种锁介绍 http://wenku.baidu.com/link?url=RdvuOpN3RPiC5aY0fKi2Xqw2MyTnpZwZbE07JriN7raJ_L6Ss8Ru1f6C3Gaxl1klYrX8sWGjWV0FJigMFo96Umisnf8cdnccboyczsikpye
一、 以2.6.38以前的内核为例, 讲spinlock、 mutex 以及 semaphore
1. spinlock更原始,效率高,但讲究更多,不能随便用。
2. 个人觉得初级阶段不要去深挖mutex 以及 semaphore的不同,用法类似。在内核代码里面搜索,感觉 DEFINE_MUTEX + mutex_lock_xx + mutex_unlock 用的更多。
3. 在内核里面这三个符号发挥的作用就是: 自旋锁与互斥体。
semaphore:内核中的信号量通常用作mutex互斥体(信号量初值初始化为1,即binary semaphore的方式,就达到了互斥的效果)。
mutex:顾名思义, 互斥体。
所以在内核里面,mutex_lock()和down()的使用情景基本上相同。
//spinlock.h
/******
*API
*spin_lock
*spin_lock_bh
*spin_lock_irq
*spin_trylock
*spin_trylock_bh
*spin_trylock_irq
*spin_unlock
*spin_unlock_bh
*spin_unlock_irq
*spin_unlock_irqrestore
*spin_unlock_wait
******/
//semaphore.h
用 DECLARE_MUTEX 定义了一个count==1 的信号量(binary semaphore)。
#define DECLARE_MUTEX(name) \
struct semaphore name = __SEMAPHORE_INITIALIZER(name, 1)
struct semaphore {
spinlock_t lock;
unsigned int count;
struct list_head wait_list;
};
#define __SEMAPHORE_INITIALIZER(name, n) \
{ \
.lock = __SPIN_LOCK_UNLOCKED((name).lock), \
.count = n, \
.wait_list = LIST_HEAD_INIT((name).wait_list), \
}
#define init_MUTEX(sem) sema_init(sem, 1)
#define init_MUTEX_LOCKED(sem) sema_init(sem, 0)
/*****
*API:
*#define init_MUTEX(sem) sema_init(sem, 1)
*#define init_MUTEX_LOCKED(sem) sema_init(sem, 0)
*extern void down(struct semaphore *sem);
*extern int __must_check down_interruptible(struct semaphore *sem);
*extern int __must_check down_killable(struct semaphore *sem);
*extern int __must_check down_trylock(struct semaphore *sem);
*extern int __must_check down_timeout(struct semaphore *sem, long jiffies);
*extern void up(struct semaphore *sem);
****/
//mutex.h
#define DEFINE_MUTEX(mutexname) \
struct mutex mutexname = __MUTEX_INITIALIZER(mutexname)
#define __MUTEX_INITIALIZER(lockname) \
{ .count = ATOMIC_INIT(1) \
, .wait_lock = __SPIN_LOCK_UNLOCKED(lockname.wait_lock) \
, .wait_list = LIST_HEAD_INIT(lockname.wait_list) \
__DEBUG_MUTEX_INITIALIZER(lockname) \
__DEP_MAP_MUTEX_INITIALIZER(lockname) }
/*
* Simple, straightforward mutexes with strict semantics:
*
* - only one task can hold the mutex at a time
* - only the owner can unlock the mutex
* - multiple unlocks are not permitted
* - recursive locking is not permitted
* - a mutex object must be initialized via the API
* - a mutex object must not be initialized via memset or copying
* - task may not exit with mutex held
* - memory areas where held locks reside must not be freed
* - held mutexes must not be reinitialized
* - mutexes may not be used in hardware or software interrupt
* contexts such as tasklets and timers
*
* These semantics are fully enforced when DEBUG_MUTEXES is
* enabled. Furthermore, besides enforcing the above rules, the mutex
* debugging code also implements a number of additional features
* that make lock debugging easier and faster:
*
* - uses symbolic names of mutexes, whenever they are printed in debug output
* - point-of-acquire tracking, symbolic lookup of function names
* - list of all locks held in the system, printout of them
* - owner tracking
* - detects self-recursing locks and prints out all relevant info
* - detects multi-task circular deadlocks and prints out all affected
* locks and tasks (and only those tasks)
*/
struct mutex {
/* 1: unlocked, 0: locked, negative: locked, possible waiters */
atomic_t count;
spinlock_t wait_lock;
struct list_head wait_list;
#if defined(CONFIG_DEBUG_MUTEXES) || defined(CONFIG_SMP)
struct thread_info *owner;
#endif
#ifdef CONFIG_DEBUG_MUTEXES
const char *name;
void *magic;
#endif
#ifdef CONFIG_DEBUG_LOCK_ALLOC
struct lockdep_map dep_map;
#endif
};
/*******
*API:
*extern void mutex_lock(struct mutex *lock);
*extern int __must_check mutex_lock_interruptible(struct mutex *lock);
*extern int __must_check mutex_lock_killable(struct mutex *lock);
*extern void mutex_unlock(struct mutex *lock);
********/
EG1-:
spinlock_t rtc_lock;
spin_lock_init(&rtc_lock);//每个驱动都会事先初始化,只需要这一次初始化 spin_lock_irq(&rtc_lock);
//临界区
spin_unlock_irq(&rtc_lock); EG1-:
unsigned long flags;
static spinlock_t i2o_drivers_lock;
spin_lock_init(&i2o_drivers_lock);//每个驱动都会事先初始化,只需要这一次初始化 spin_lock_irqsave(&i2o_drivers_lock, flags);
//临界区
spin_unlock_irqrestore(&i2o_drivers_lock, flags); EG2:
static DECLARE_MUTEX(start_stop_sem);
down(&start_stop_sem);
//临界区
up(&start_stop_sem); EG3:
static DEFINE_MUTEX(adutux_mutex);
mutex_lock_interruptible(&adutux_mutex);
//临界区
mutex_unlock(&adutux_mutex);
二、 2.6.38以后DECLARE_MUTEX替换成DEFINE_SEMAPHORE(命名改变), DEFINE_MUTEX用法不变
static DEFINE_SEMAPHORE(msm_fb_pan_sem);// DECLARE_MUTEX
down(&adb_probe_mutex);
//临界区
up(&adb_probe_mutex); static DEFINE_SEMAPHORE(bnx2x_prev_sem);
down_interruptible(&bnx2x_prev_sem);
//临界区
up(&bnx2x_prev_sem);
Linux 2.6.36以后file_operations和DECLARE_MUTEX 的变化http://blog.csdn.net/heanyu/article/details/6757917
在include/linux/semaphore.h 中将#define DECLARE_MUTEX(name) 改成了 #define DEFINE_SEMAPHORE(name) 【命名】
三、自旋锁与信号量
1. 自旋锁
简单的说,自旋锁在内核中主要用来防止多处理器中并发访问临界区,防止内核抢占造成的竞争。【适用于多处理器】【自旋锁会影响内核调度】
另外自旋锁不允许任务睡眠(持有自旋锁的任务睡眠会造成自死锁——因为睡眠有可能造成持有锁的内核任务被重新调度,而再次申请自己已持有的锁),它能够在中断上下文中使用。【不允许任务睡眠】
锁定一个自旋锁的函数有四个:
void spin_lock(spinlock_t *lock); //最基本得自旋锁函数,它不失效本地中断。
void spin_lock_irqsave(spinlock_t *lock, unsigned long flags);//在获得自旋锁之前禁用硬中断(只在本地处理器上),而先前的中断状态保存在flags中
void spin_lockirq(spinlock_t *lock);//在获得自旋锁之前禁用硬中断(只在本地处理器上),不保存中断状态
void spin_lock_bh(spinlock_t *lock);//在获得锁前禁用软中断,保持硬中断打开状态
2. 信号量
内核中的信号量通常用作mutex互斥体(信号量初值初始化为1就达到了互斥的效果)。
如果代码需要睡眠——这往往是发生在和用户空间同步时——使用信号量是唯一的选择。由于不受睡眠的限制,使用信号量通常来说更加简单一些。【信号量使用简单】
如果需要在自旋锁和信号量中作选择,应该取决于锁被持有的时间长短。理想情况是所有的锁都应该尽可能短的被持有,但是如果锁的持有时间较长的话,使用信号量是更好的选择。【如果锁占用的时间较长,信号量更好】
另外,信号量不同于自旋锁,它不会关闭内核抢占,所以持有信号量的代码可以被抢占。这意味者信号量不会对影响调度反应时间带来负面影响。【信号量不会影响内核调度】
3. 使用情景对比
=============================================
需求 建议的加锁方法
低开销加锁 优先使用自旋锁
短期锁定 优先使用自旋锁
长期加锁 优先使用信号量
中断上下文中加锁 使用自旋锁
持有锁是需要睡眠、调度 使用信号量
=============================================