Sigmoid. Sigmoid 非线性激活函数的形式是,其图形如上图左所示。之前我们说过,sigmoid函数输入一个实值的数,然后将其压缩到0~1的范围内。特别地,大的负数被映射成0,大的正数被映射成1。sigmoid function在历史上流行过一段时间因为它能够很好的表达“激活”的意思,未激活就是0,完全饱和的激活则是1。而现在sigmoid已经不怎么常用了,主要是因为它有两个缺点:
- Sigmoids saturate and kill gradients. Sigmoid容易饱和,并且当输入非常大或者非常小的时候,神经元的梯度就接近于0了,从图中可以看出梯度的趋势。这就使得我们在反向传播算法中反向传播接近于0的梯度,导致最终权重基本没什么更新,我们就无法递归地学习到输入数据了。另外,你需要尤其注意参数的初始值来尽量避免saturation的情况。如果你的初始值很大的话,大部分神经元可能都会处在saturation的状态而把gradient kill掉,这会导致网络变的很难学习。
-
Sigmoid outputs are not zero-centered. Sigmoid 的输出不是0均值的,这是我们不希望的,因为这会导致后层的神经元的输入是非0均值的信号,这会对梯度产生影响:假设后层神经元的输入都为正(e.g. x>0 elementwise in ),那么对w求局部梯度则都为正,这样在反向传播的过程中w要么都往正方向更新,要么都往负方向更新,导致有一种捆绑的效果,使得收敛缓慢。
当然了,如果你是按batch去训练,那么每个batch可能得到不同的符号(正或负),那么相加一下这个问题还是可以缓解。因此,非0均值这个问题虽然会产生一些不好的影响,不过跟上面提到的 kill gradients 问题相比还是要好很多的。
Tanh. Tanh和Sigmoid是有异曲同工之妙的,它的图形如上图右所示,不同的是它把实值得输入压缩到-1~1的范围,因此它基本是0均值的,也就解决了上述Sigmoid缺点中的第二个,所以实际中tanh会比sigmoid更常用。但是它还是存在梯度饱和的问题。Tanh是sigmoid的变形:。
ReLU. 近年来,ReLU 变的越来越受欢迎。它的数学表达式是: f(x)=max(0,x)。很显然,从上图左可以看出,输入信号
<0时,输出为0,>0时,输出等于输入。ReLU的优缺点如下:
- 优点1:Krizhevsky et al. 发现使用 ReLU 得到的SGD的收敛速度会比 sigmoid/tanh 快很多(如上图右)。有人说这是因为它是linear,而且梯度不会饱和
- 优点2:相比于 sigmoid/tanh需要计算指数等,计算复杂度高,ReLU 只需要一个阈值就可以得到激活值。
- 缺点1: ReLU在训练的时候很”脆弱”,一不小心有可能导致神经元”坏死”。举个例子:由于ReLU在x<0时梯度为0,这样就导致负的梯度在这个ReLU被置零,而且这个神经元有可能再也不会被任何数据激活。如果这个情况发生了,那么这个神经元之后的梯度就永远是0了,也就是ReLU神经元坏死了,不再对任何数据有所响应。实际操作中,如果你的learning rate 很大,那么很有可能你网络中的40%的神经元都坏死了。 当然,如果你设置了一个合适的较小的learning rate,这个问题发生的情况其实也不会太频繁。
Leaky ReLU. Leaky ReLUs 就是用来解决ReLU坏死的问题的。和ReLU不同,当x<0时,它的值不再是0,而是一个较小斜率(如0.01等)的函数。也就是说f(x)=1(x<0)(ax)+1(x>=0)(x),其中a是一个很小的常数。这样,既修正了数据分布,又保留了一些负轴的值,使得负轴信息不会全部丢失。关于Leaky ReLU 的效果,众说纷纭,没有清晰的定论。有些人做了实验发现 Leaky ReLU 表现的很好;有些实验则证明并不是这样。
- PReLU. 对于 Leaky ReLU 中的a,通常都是通过先验知识人工赋值的。然而可以观察到,损失函数对a的导数我们是可以求得的,可不可以将它作为一个参数进行训练呢? Kaiming He 2015的论文《Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification》指出,不仅可以训练,而且效果更好。原文说使用了Parametric ReLU后,最终效果比不用提高了1.03%.
-Randomized Leaky ReLU. Randomized Leaky ReLU 是 leaky ReLU 的random 版本, 其核心思想就是,在训练过程中,a是从一个高斯分布中随机出来的,然后再在测试过程中进行修正。
Maxout. Maxout的形式是f(x)=max(w_1^Tx+b_1,w_2^Tx+b_2),它最早出现在ICML2013上,作者Goodfellow将maxout和dropout结合后,号称在MNIST, CIFAR-10, CIFAR-100, SVHN这4个数据上都取得了start-of-art的识别率。可以看出ReLU 和 Leaky ReLU 都是Maxout的一个变形,所以Maxout 具有 ReLU 的优点(如:计算简单,不会 saturation),同时又没有 ReLU 的一些缺点 (如:容易饱和)。不过呢Maxout相当于把每个神经元的参数都double了,造成参数增多。
Maxout的拟合能力非常强,它可以拟合任意的的凸函数。作者从数学的角度上也证明了这个结论,即只需2个maxout节点就可以拟合任意的凸函数了(相减),前提是”隐含层”节点的个数可以任意多。
How to choose a activation function? 怎么选择激活函数呢?
我觉得这种问题不可能有定论的吧,只能说是个人建议。
如果你使用 ReLU,那么一定要小心设置 learning rate,而且要注意不要让你的网络出现很多坏死的 神经元,如果这个问题不好解决,那么可以试试 Leaky ReLU、PReLU 或者 Maxout.
友情提醒:最好不要用 sigmoid,你可以试试 tanh,不过可以预期它的效果会比不上 ReLU 和 Maxout.
还有,通常来说,很少会把各种激活函数串起来在一个网络中使用的。
- 关于激活函数的部分内容参考:
http://blog.csdn.net/cyh_24/article/details/50593400