Java的String类
String类是除了Java的基本类型之外用的最多的类, 甚至用的比基本类型还多. 同样jdk中对Java类也有很多的优化
类的定义
public final class String
implements java.io.Serializable, Comparable<String>, CharSequence{
/** The value is used for character storage. */
private final char value[];
/** Cache the hash code for the string */
private int hash; // Default to 0
/** use serialVersionUID from JDK 1.0.2 for interoperability */
private static final long serialVersionUID = -6849794470754667710L;
/**
* Class String is special cased within the Serialization Stream Protocol.
*
* A String instance is written into an ObjectOutputStream according to
* <a href="{@docRoot}/../platform/serialization/spec/output.html">
* Object Serialization Specification, Section 6.2, "Stream Elements"</a>
*/
private static final ObjectStreamField[] serialPersistentFields =
new ObjectStreamField[0];
/**
* Initializes a newly created {@code String} object so that it represents
* an empty character sequence. Note that use of this constructor is
* unnecessary since Strings are immutable.
*/
public String() {
this.value = "".value;
}
/**
* Initializes a newly created {@code String} object so that it represents
* the same sequence of characters as the argument; in other words, the
* newly created string is a copy of the argument string. Unless an
* explicit copy of {@code original} is needed, use of this constructor is
* unnecessary since Strings are immutable.
*
* @param original
* A {@code String}
*/
public String(String original) {
this.value = original.value;
this.hash = original.hash;
}
Final 标识不允许集成重载. jdk中还多重要类都是final 标识, 防止应用程序继承重载以影响jdk的安全
继承Serializable 接口, 可以放心的序列化
Comparable 接口, 可以根据自然序排序.
CharSequence 字符串的重要接口
char数组 value . Final 修饰.
hash字段 int, 表示当前的hashCode值, 避免每次重复计算hash值
Comparable 接口的compareTo方法实现
public int compareTo(String anotherString) {
int len1 = value.length;
int len2 = anotherString.value.length;
int lim = Math.min(len1, len2);
char v1[] = value;
char v2[] = anotherString.value;
int k = 0;
while (k < lim) { //也只是循环比较到长度短的那个字符串
char c1 = v1[k];
char c2 = v2[k];
if (c1 != c2) {
return c1 - c2;
}
k++;
}
return len1 - len2; //如果前面的长度字符串都一样, 则长度长的大
}
从左往右逐个char字符比较大小, 从代码可以看出 "S" > "ASSSSSSSSSSSSSSS"
也只是循环比较到长度短的那个字符串
-
如果前面的长度字符串都一样, 则长度长的大
构造方法
/**
* Initializes a newly created {@code String} object so that it represents
* an empty character sequence. Note that use of this constructor is
* unnecessary since Strings are immutable.
*/
public String() {
this.value = "".value;
}
/**
* Initializes a newly created {@code String} object so that it represents
* the same sequence of characters as the argument; in other words, the
* newly created string is a copy of the argument string. Unless an
* explicit copy of {@code original} is needed, use of this constructor is
* unnecessary since Strings are immutable.
*
* @param original
* A {@code String}
*/
public String(String original) {
this.value = original.value;
this.hash = original.hash;
}
/**
*
*/
public String(byte bytes[], int offset, int length, Charset charset) {
if (charset == null)
throw new NullPointerException("charset");
checkBounds(bytes, offset, length);
this.value = StringCoding.decode(charset, bytes, offset, length);
}
空白构造方法其实是生成 "" 字符串
传入其他字符串的构造方式其实只是把其他字符串的value 和hash 值的引用复制一份, 不用担心两个字符串的value和hash 互相干扰. 因为String类中没有修改这两个值的方法, 并且这两个值是private final修饰的, 已经无法修改了
空白构造方法中没有设置hash的值, 则使用 hash的默认值 // Default to 0
-
传入字节数组的构造方法, 怎么将字节转成字符串是使用
StringCoding.decode(charset, bytes, offset, length);
方法StringCoding类的修饰符是default 并且里面都是default static 修饰的方法, 很遗憾, 我们无法直接使用其中的方法
StringCoding.decode 方法
static char[] decode(Charset cs, byte[] ba, int off, int len) {
// (1)We never cache the "external" cs, the only benefit of creating
// an additional StringDe/Encoder object to wrap it is to share the
// de/encode() method. These SD/E objects are short-lifed, the young-gen
// gc should be able to take care of them well. But the best approash
// is still not to generate them if not really necessary.
// (2)The defensive copy of the input byte/char[] has a big performance
// impact, as well as the outgoing result byte/char[]. Need to do the
// optimization check of (sm==null && classLoader0==null) for both.
// (3)getClass().getClassLoader0() is expensive
// (4)There might be a timing gap in isTrusted setting. getClassLoader0()
// is only chcked (and then isTrusted gets set) when (SM==null). It is
// possible that the SM==null for now but then SM is NOT null later
// when safeTrim() is invoked...the "safe" way to do is to redundant
// check (... && (isTrusted || SM == null || getClassLoader0())) in trim
// but it then can be argued that the SM is null when the opertaion
// is started...
CharsetDecoder cd = cs.newDecoder();
int en = scale(len, cd.maxCharsPerByte());
char[] ca = new char[en];
if (len == 0)
return ca;
boolean isTrusted = false;
if (System.getSecurityManager() != null) {
if (!(isTrusted = (cs.getClass().getClassLoader0() == null))) {
ba = Arrays.copyOfRange(ba, off, off + len);
off = 0;
}
}
cd.onMalformedInput(CodingErrorAction.REPLACE)
.onUnmappableCharacter(CodingErrorAction.REPLACE)
.reset();
if (cd instanceof ArrayDecoder) {
int clen = ((ArrayDecoder)cd).decode(ba, off, len, ca);
return safeTrim(ca, clen, cs, isTrusted);
} else {
ByteBuffer bb = ByteBuffer.wrap(ba, off, len);
CharBuffer cb = CharBuffer.wrap(ca);
try {
CoderResult cr = cd.decode(bb, cb, true);
if (!cr.isUnderflow())
cr.throwException();
cr = cd.flush(cb);
if (!cr.isUnderflow())
cr.throwException();
} catch (CharacterCodingException x) {
// Substitution is always enabled,
// so this shouldn't happen
throw new Error(x);
}
return safeTrim(ca, cb.position(), cs, isTrusted);
}
}
-
真正的byte[] 转成char[] 是使用CharsetDecoder虚拟类, 而这个类的对象是你传入的Charset字符编码类中生成的.
看下UTF8的CharsetDecoder实现类.
UTF8的CharsetDecoder 类是内部静态类, 实现了CharsetDecoder 和ArrayDecoder 接口, 接口中的方法很长,都是字节转字符的一些换算, 如果要看懂, 需要一些编码的知识. 追到这里结束
private static class Decoder extends CharsetDecoder implements ArrayDecoder {
private Decoder(Charset var1) {
super(var1, 1.0F, 1.0F);
}
// 此处省略无关方法.......
/**
* 真正的字节转字符的方法
*/
public int decode(byte[] var1, int var2, int var3, char[] var4) {
int var5 = var2 + var3;
int var6 = 0;
int var7 = Math.min(var3, var4.length); ByteBuffer var8;
for(var8 = null; var6 < var7 && var1[var2] >= 0; var4[var6++] = (char)var1[var2++]) {
} while(true) {
while(true) {
while(var2 < var5) {
byte var9 = var1[var2++];
if (var9 < 0) {
byte var10;
if (var9 >> 5 != -2 || (var9 & 30) == 0) {
byte var11;
if (var9 >> 4 == -2) {
if (var2 + 1 < var5) {
var10 = var1[var2++];
var11 = var1[var2++];
if (isMalformed3(var9, var10, var11)) {
if (this.malformedInputAction() != CodingErrorAction.REPLACE) {
return -1;
} var4[var6++] = this.replacement().charAt(0);
var2 -= 3;
var8 = getByteBuffer(var8, var1, var2);
var2 += malformedN(var8, 3).length();
} else {
char var15 = (char)(var9 << 12 ^ var10 << 6 ^ var11 ^ -123008);
if (Character.isSurrogate(var15)) {
if (this.malformedInputAction() != CodingErrorAction.REPLACE) {
return -1;
} var4[var6++] = this.replacement().charAt(0);
} else {
var4[var6++] = var15;
}
}
} else {
if (this.malformedInputAction() != CodingErrorAction.REPLACE) {
return -1;
} if (var2 >= var5 || !isMalformed3_2(var9, var1[var2])) {
var4[var6++] = this.replacement().charAt(0);
return var6;
} var4[var6++] = this.replacement().charAt(0);
}
} else if (var9 >> 3 != -2) {
if (this.malformedInputAction() != CodingErrorAction.REPLACE) {
return -1;
} var4[var6++] = this.replacement().charAt(0);
} else if (var2 + 2 < var5) {
var10 = var1[var2++];
var11 = var1[var2++];
byte var12 = var1[var2++];
int var13 = var9 << 18 ^ var10 << 12 ^ var11 << 6 ^ var12 ^ 3678080;
if (!isMalformed4(var10, var11, var12) && Character.isSupplementaryCodePoint(var13)) {
var4[var6++] = Character.highSurrogate(var13);
var4[var6++] = Character.lowSurrogate(var13);
} else {
if (this.malformedInputAction() != CodingErrorAction.REPLACE) {
return -1;
} var4[var6++] = this.replacement().charAt(0);
var2 -= 4;
var8 = getByteBuffer(var8, var1, var2);
var2 += malformedN(var8, 4).length();
}
} else {
if (this.malformedInputAction() != CodingErrorAction.REPLACE) {
return -1;
} int var14 = var9 & 255;
if (var14 <= 244 && (var2 >= var5 || !isMalformed4_2(var14, var1[var2] & 255))) {
++var2;
if (var2 >= var5 || !isMalformed4_3(var1[var2])) {
var4[var6++] = this.replacement().charAt(0);
return var6;
} var4[var6++] = this.replacement().charAt(0);
} else {
var4[var6++] = this.replacement().charAt(0);
}
}
} else {
if (var2 >= var5) {
if (this.malformedInputAction() != CodingErrorAction.REPLACE) {
return -1;
} var4[var6++] = this.replacement().charAt(0);
return var6;
} var10 = var1[var2++];
if (isNotContinuation(var10)) {
if (this.malformedInputAction() != CodingErrorAction.REPLACE) {
return -1;
} var4[var6++] = this.replacement().charAt(0);
--var2;
} else {
var4[var6++] = (char)(var9 << 6 ^ var10 ^ 3968);
}
}
} else {
var4[var6++] = (char)var9;
}
} return var6;
}
}
}
**结论: 字节转换成字符串需要使用到工具类StringCoding 类的decode方法,此方法会依赖传入的Charset 编码类中的内部静态类StringDecode的decode方法来真正的把字节转成字符串. Java通过接口的定义很好的把具体的实现转移到具体的编码类中, 而String只要面向接口编程就可以了, 这样也方便扩展不同的编码 **
同样的String的getBytes方法也是把主要的工作转移到具体Charset 编码类的StringEncode 来完成
hashCode方法
重写了此方法, 并且值和每个字符有关
public int hashCode() {
int h = hash;
if (h == 0 && value.length > 0) {
char val[] = value;
for (int i = 0; i < value.length; i++) {
h = 31 * h + val[i]; //为何旧值要乘以31
}
hash = h;
}
return h;
}
字符串的拼接concat方法和join静态方法
concat方法
public String concat(String str) {
int otherLen = str.length();
if (otherLen == 0) {
return this;
}
int len = value.length;
char buf[] = Arrays.copyOf(value, len + otherLen);
str.getChars(buf, len);
return new String(buf, true);
}
直接在内存中复制一份新的数组, 在new 一个String对象. 线程安全. 性能较低.
-
也可以直接是用 + 拼接.
参考 https://blog.csdn.net/youanyyou/article/details/78992978这个链接了解到. + 链接再编译成字节码后还是使用的StringBuiler 来拼接, 而concat 还是使用数组复制加上 new 新对象来拼接, 综合得出 还是使用 + 来拼接吧, 性能更好
join静态方法
public static String join(CharSequence delimiter, CharSequence... elements) {
Objects.requireNonNull(delimiter);
Objects.requireNonNull(elements);
// Number of elements not likely worth Arrays.stream overhead.
StringJoiner joiner = new StringJoiner(delimiter);
for (CharSequence cs: elements) {
joiner.add(cs);
}
return joiner.toString();
}
具体的代码需要追到StringJoiner类中
public final class StringJoiner {
private final String prefix;
private final String delimiter;
private final String suffix;
/*
* StringBuilder value -- at any time, the characters constructed from the
* prefix, the added element separated by the delimiter, but without the
* suffix, so that we can more easily add elements without having to jigger
* the suffix each time.
*/
private StringBuilder value;
/**
* Adds a copy of the given {@code CharSequence} value as the next
* element of the {@code StringJoiner} value. If {@code newElement} is
* {@code null}, then {@code "null"} is added.
*
* @param newElement The element to add
* @return a reference to this {@code StringJoiner}
*/
public StringJoiner add(CharSequence newElement) {
prepareBuilder().append(newElement);
return this;
}
private StringBuilder prepareBuilder() {
if (value != null) {
value.append(delimiter);
} else {
value = new StringBuilder().append(prefix);
}
return value;
}
- 内部发现还是使用StringBuilder来实现, join 完全就是一个为了使用方便的一个工具方法
replace方法
public String replace(char oldChar, char newChar)
- 使用数组遍历替换
public String replace(CharSequence target, CharSequence replacement)
- 使用正则表达式进行替换, 正则的源码在 接下来的文章分析
Format 静态方法, 可以格式换字符串, 主要用于字符串的国际化,
内部使用了Formatter类, 而Formatter 中也是使用了正则表达式,
toLowerCase方法
public String toLowerCase(Locale locale)
- 遍历char 数组, 每个字符使用Character.toLowerCase 来小写
trim 方法
从前后遍历空白字符, 判断空白字符是使用的 char <=' '
来判断的(学到一点), 后面在使用substring来截取非空白字符
substring方法
内部使用public String(char value[], int offset, int count)
构造方法来生成新的字符串, 在这个构造方法内部会有数组的赋值
valueOf方法
public static String valueOf(Object obj) {
return (obj == null) ? "null" : obj.toString();
}
// 内部使用传入对象的自己的toString方法, 传入对象如果没有重载toString方法, 就使用默认的toString方法.
public static String valueOf(char data[]) {
return new String(data);
}
// 根据传入的数组来选择合适的构造方法来生成String对象
public static String valueOf(boolean b) {
return b ? "true" : "false";
}
// 根据传入布尔值
static copyValueOf方法
public static String copyValueOf(char data[], int offset, int count) {
return new String(data, offset, count);
}
// 静态工具方法, 默认使用合适构造方法来截取和生成新新的字符串
native intern方法
这个方法涉及到String的内存和常量池, 具体会在其他文章中详解.
public native String intern();