马士兵hadoop第五课:java开发Map/Reduce

时间:2022-01-29 19:42:09

马士兵hadoop第一课:虚拟机搭建和安装hadoop及启动

马士兵hadoop第二课:hdfs集群集中管理和hadoop文件操作

马士兵hadoop第三课:java开发hdfs

马士兵hadoop第四课:Yarn和Map/Reduce配置启动和原理讲解

马士兵hadoop第五课:java开发Map/Reduce

配置系统环境变量HADOOP_HOME,指向hadoop安装目录(如果你不想招惹不必要的麻烦,不要在目录中包含空格或者中文字符)
把HADOOP_HOME/bin加到PATH环境变量(非必要,只是为了方便)
如果是在windows下开发,需要添加windows的库文件
把盘*享的bin目录覆盖HADOOP_HOME/bin
如果还是不行,把其中的hadoop.dll复制到c:\windows\system32目录下,可能需要重启机器
建立新项目,引入hadoop需要的jar文件

代码WordMapper:

import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; public class WordMapper extends Mapper<LongWritable,Text, Text, IntWritable> { @Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context)
throws IOException, InterruptedException {
String line = value.toString();
String[] words = line.split(" ");
for(String word : words) {
context.write(new Text(word), new IntWritable(1));
}
} }

代码WordReducer:

import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; public class WordReducer extends Reducer<Text, IntWritable, Text, LongWritable> { @Override
protected void reduce(Text key, Iterable<IntWritable> values,
Reducer<Text, IntWritable, Text, LongWritable>.Context context) throws IOException, InterruptedException {
long count = 0;
for(IntWritable v : values) {
count += v.get();
}
context.write(key, new LongWritable(count));
} }

代码Test:

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class Test {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration(); Job job = Job.getInstance(conf); job.setMapperClass(WordMapper.class);
job.setReducerClass(WordReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class); FileInputFormat.setInputPaths(job, "c:/bigdata/hadoop/test/test.txt");
FileOutputFormat.setOutputPath(job, new Path("c:/bigdata/hadoop/test/out/")); job.waitForCompletion(true);
}
}

把hdfs中的文件拉到本地来运行

FileInputFormat.setInputPaths(job, "hdfs://master:9000/wcinput/");
FileOutputFormat.setOutputPath(job, new Path("hdfs://master:9000/wcoutput2/"));

注意这里是把hdfs文件拉到本地来运行,如果观察输出的话会观察到jobID带有local字样
同时这样的运行方式是不需要yarn的(自己停掉yarn服务做实验)
在远程服务器执行

conf.set("fs.defaultFS", "hdfs://master:9000/");

conf.set("mapreduce.job.jar", "target/wc.jar");
conf.set("mapreduce.framework.name", "yarn");
conf.set("yarn.resourcemanager.hostname", "master");
conf.set("mapreduce.app-submission.cross-platform", "true"); FileInputFormat.setInputPaths(job, "/wcinput/");
FileOutputFormat.setOutputPath(job, new Path("/wcoutput3/"));

如果遇到权限问题,配置执行时的虚拟机参数-DHADOOP_USER_NAME=root
也可以将hadoop的四个配置文件拿下来放到src根目录下,就不需要进行手工配置了,默认到classpath目录寻找
或者将配置文件放到别的地方,使用conf.addResource(.class.getClassLoader.getResourceAsStream)方式添加,不推荐使用绝对路径的方式