题意:从左至右给你n个正方形的边长,接着这些正方形都按照旋转45度以一角为底放置坐标轴上,最左边的正方形左端点抵住y轴,后面的正方形依次紧贴前面所有正方形放置,问从上方向下看去,有哪些正方形是可以被看到的(如图)
题解:首先找到每个正方形左右端点的坐标转化为一条线段,接着寻找哪些线段被其他某些条线段覆盖,那这些被覆盖的线段就不能被看到了
寻找被覆盖的线段利用区间贪心,我们按照左端点升序、左端点相同右端点降序排序,则左端点一定被前面的线段覆盖,接着对于右端点使用单调栈的思想寻找可以看到的线段就好
找左端点时就将此正方形与之前的每个正方形紧贴找最大的值(关键)
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<string>
#include<cstdio>
#include<cstring>
#include<iomanip>
#include<stdlib.h>
#include<iostream>
#include<algorithm>
using namespace std;
#define eps 1E-8
/*注意可能会有输出-0.000*/
#define Sgn(x) (x<-eps? -1 :x<eps? 0:1)//x为两个浮点数差的比较,注意返回整型
#define Cvs(x) (x > 0.0 ? x+eps : x-eps)//浮点数转化
#define zero(x) (((x)>0?(x):-(x))<eps)//判断是否等于0
#define mul(a,b) (a<<b)
#define dir(a,b) (a>>b)
typedef long long ll;
typedef unsigned long long ull;
const int Inf=<<;
const ll INF=1ll<<;
const double Pi=acos(-1.0);
const int Mod=1e9+;
const int Max=;
int num[Max],vis[Max];
int line[Max];
struct node
{
int x,y,pos;
} lin[Max];
bool cmp(node a,node b)
{
if(a.x==b.x)
return a.y>b.y;
return a.x<b.x;
}
int Jud(int n)
{
int coun=;
for(int i=; i<n; ++i)
{
lin[i].x=line[i],lin[i].y=line[i]+num[i],lin[i].pos=i+;
}
sort(lin,lin+n,cmp);
vis[coun++]=;
node now=lin[];
for(int i=;i<n;++i)
{
if(lin[i].y>now.y)
{
for(int j=coun-;j>=;--j)
{
if(lin[i].x<=lin[vis[j]].y)//找之前的lin(不一定连续)
coun--;
else
break;
}
now=lin[i];
vis[coun++]=i;//注意这儿记录的值
}
}
for(int i=;i<coun;++i)
vis[i]=lin[vis[i]].pos;
sort(vis,vis+coun);
return coun;
}
int main()
{
int n;
while(~scanf("%d",&n)&&n)
{
for(int i=; i<n; ++i)
{
scanf("%d",&num[i]);
num[i]*=;//边长变成对角线,但是同比例扩大sqrt(2.0)后就变成2倍了
}
line[]=;
for(int i=; i<n; ++i)
{
line[i]=;
for(int j=; j<i; ++j)
{
int tem=num[j]-abs(num[i]-num[j])/+line[j];//与每个之前的正方形紧贴在一起的x轴坐标
line[i]=max(line[i],tem);//一定是x轴最大的值
}
}
int coun=Jud(n);
for(int i=; i<coun; ++i)
printf("%d%c",vis[i],i==coun-?'\n':' ');
}
return ;
}