思路:
区间dp
dp[l][r]表示ƒ([l, r])的值
显然,状态转移方程为dp[l][r] = dp[l][r-1] ^ dp[l+1][r]
初始状态dp[i][i] = a[i]
可是,这道题求的是这段区间包含的某一连续区间的最大值
那么用差不多的转移方程再求一遍区间最大值:dp[l][r] = max(dp[l][r],dp[l][r-1],dp[l+1][r])
代码:
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define pb push_back
#define mem(a, b) memset(a, b, sizeof(a)) const int N = 5e3 + ;
int dp[N][N], a[N];
int main() {
int n, q, l, r;
scanf("%d", &n);
for (int i = ; i <= n; i++) scanf("%d", &a[i]);
for (int i = n; i >= ; i--) {
dp[i][i] = a[i];
for (int j = i+; j <= n; j++) {
dp[i][j] = dp[i][j-] ^ dp[i+][j];
}
}
for (int i = n; i >= ; i--) {
for (int j = i+; j <= n; j++) {
dp[i][j] = max(dp[i][j], max(dp[i][j-], dp[i+][j]));
}
}
scanf("%d", &q);
while(q--) {
scanf("%d %d", &l, &r);
printf("%d\n", dp[l][r]);
}
return ;
}