f(n)=真的Θ(f(n))?

时间:2022-09-30 17:04:12

Can you prove using reflexivity that f(n) equals big Theta(f(n))? It seems straight forward when thinking about it because f(n) is bounded above and below by itself. But how will I write this down? And does this apply to big Omega and big O

你能证明使用自反性f(n)等于大(f(n))吗?当我们考虑它的时候,它似乎是直接向前的,因为f(n)是由它自己上界和下界的。但是我该怎么写呢?这是否适用于大O

2 个解决方案

#1


1  

I believe what you are intending to ask is (w.r.t. @emory:s answer) is something along the lines:

我相信你想问的是(w。r。t。@emory:s answer)。

"For some function f(n), is it true that f ∈ ϴ(f(n))?"

“对于一些函数f(n),f真的∈ϴ(f(n))?”

If you emanate from the formal definition of Big-ϴ notation, it is quite apparent that this holds.

如果你是从Big-ϴ正式定义的符号,这很明显。


f ∈ ϴ(g(n))

f∈ϴ(g(n))

⇨ For some positive constants c1, c2, and n0, the following holds:

⇨一些积极的c1,c2,n0,以下是适用的:

c1 · |g(n)| ≤ |f(n)| ≤ c2 · |g(n)|, for all n ≥ n0          (+)

Let f(n) be some arbitrary real-valued function. Set g(n) = f(n) and choose, e.g., c1=0.5, c2=2, and n0 = 1. Then, naturally, (+) holds:

让f(n)为任意实值函数。设g(n) = f(n)并选择,例如c1=0.5, c2=2, n0 = 1。然后,当然,(+)是适用的:

0.5 · |f(n)| ≤ |f(n)| ≤ 2 · |f(n)|, for all n ≥ 1

Hence, f ∈ ϴ(f(n)) holds.

因此,f∈ϴ(f(n))。

#2


0  

No we can not because it is not true. ϴ(f(n)) is a set. f(n) is a member of that set. f(n)+1 is also a member of that set.

不,我们不能,因为那不是真的。ϴ(f(n))是一个集f(n)是集f(n)+ 1也是一个成员的集合。

#1


1  

I believe what you are intending to ask is (w.r.t. @emory:s answer) is something along the lines:

我相信你想问的是(w。r。t。@emory:s answer)。

"For some function f(n), is it true that f ∈ ϴ(f(n))?"

“对于一些函数f(n),f真的∈ϴ(f(n))?”

If you emanate from the formal definition of Big-ϴ notation, it is quite apparent that this holds.

如果你是从Big-ϴ正式定义的符号,这很明显。


f ∈ ϴ(g(n))

f∈ϴ(g(n))

⇨ For some positive constants c1, c2, and n0, the following holds:

⇨一些积极的c1,c2,n0,以下是适用的:

c1 · |g(n)| ≤ |f(n)| ≤ c2 · |g(n)|, for all n ≥ n0          (+)

Let f(n) be some arbitrary real-valued function. Set g(n) = f(n) and choose, e.g., c1=0.5, c2=2, and n0 = 1. Then, naturally, (+) holds:

让f(n)为任意实值函数。设g(n) = f(n)并选择,例如c1=0.5, c2=2, n0 = 1。然后,当然,(+)是适用的:

0.5 · |f(n)| ≤ |f(n)| ≤ 2 · |f(n)|, for all n ≥ 1

Hence, f ∈ ϴ(f(n)) holds.

因此,f∈ϴ(f(n))。

#2


0  

No we can not because it is not true. ϴ(f(n)) is a set. f(n) is a member of that set. f(n)+1 is also a member of that set.

不,我们不能,因为那不是真的。ϴ(f(n))是一个集f(n)是集f(n)+ 1也是一个成员的集合。