The spark version I am using is 2.0+ All I am trying to do is just read a pipe (|) separated values file into a Dataframe and then run SQL like queries. I have tried comma delimited file too. I am interacting with spark using spark-shell I have downloaded spark-csv jar and ran spark-shell with --packages option to import it into my session. It was imported successfully.
我使用的spark版本是2.0+所有我想要做的只是将一个管道(|)分隔值文件读入Dataframe,然后像查询一样运行SQL。我也尝试过逗号分隔文件。我正在使用spark-shell与spark进行交互我已经下载了spark-csv jar并使用--packages选项运行spark-shell将其导入到我的会话中。它已成功导入。
import spark.implicits._
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql._
val session =
SparkSession.builder().appName("test").master("local").getOrCreate()
val df = session.read.format("com.databricks.spark.csv").option("header", "true").option("mode", "DROPMALFORMED").load("testdata.txt");
WARN Hive: Failed to access metastore. This class should not accessed in runtime.
apache.hadoop.hive.ql.metadata.HiveException: java.lang.RuntimeException: Unable to instantiate org.apache.hadoop.hi
at org.apache.hadoop.hive.ql.metadata.Hive.getAllDatabases(Hive.java:1236)
at org.apache.hadoop.hive.ql.metadata.Hive.reloadFunctions(Hive.java:174)
at org.apache.hadoop.hive.ql.metadata.Hive.<clinit>(Hive.java:166)
at org.apache.hadoop.hive.ql.session.SessionState.start(SessionState.java:503)
at org.apache.spark.sql.hive.client.HiveClientImpl.<init>(HiveClientImpl.scala:171)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(Unknown Source)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(Unknown Source)
at java.lang.reflect.Constructor.newInstance(Unknown Source)
at org.apache.spark.sql.hive.client.IsolatedClientLoader.createClient(IsolatedClientLoader.scala:258)
at org.apache.spark.sql.hive.HiveUtils$.newClientForMetadata(HiveUtils.scala:359)
at org.apache.spark.sql.hive.HiveUtils$.newClientForMetadata(HiveUtils.scala:263)
at org.apache.spark.sql.hive.HiveSharedState.metadataHive$lzycompute(HiveSharedState.scala:39)
1 个解决方案
#1
0
You can directly load psv file into RDD then split it as per your requirement and then you can apply schema on it. This is the java example.
您可以直接将psv文件加载到RDD中,然后根据您的要求将其拆分,然后您可以在其上应用模式。这是java的例子。
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
public class RDDtoDF_Update {
public static void main(final String[] args) throws Exception {
SparkSession spark = SparkSession
.builder()
.appName("RDDtoDF_Updated")
.master("local[2]")
.config("spark.some.config.option", "some-value")
.getOrCreate();
StructType schema = DataTypes
.createStructType(new StructField[] {
DataTypes.createStructField("eid", DataTypes.IntegerType, false),
DataTypes.createStructField("eName", DataTypes.StringType, false),
DataTypes.createStructField("eAge", DataTypes.IntegerType, true),
DataTypes.createStructField("eDept", DataTypes.IntegerType, true),
DataTypes.createStructField("eSal", DataTypes.IntegerType, true),
DataTypes.createStructField("eGen", DataTypes.StringType,true)});
String filepath = "F:/Hadoop/Data/EMPData.txt";
JavaRDD<Row> empRDD = spark.read()
.textFile(filepath)
.javaRDD()
.map(line -> line.split("\t"))
.map(r -> RowFactory.create(Integer.parseInt(r[0]), r[1].trim(),Integer.parseInt(r[2]),
Integer.parseInt(r[3]),Integer.parseInt(r[4]),r[5].trim() ));
Dataset<Row> empDF = spark.createDataFrame(empRDD, schema);
empDF.groupBy("edept").max("esal").show();
Thanks.
#1
0
You can directly load psv file into RDD then split it as per your requirement and then you can apply schema on it. This is the java example.
您可以直接将psv文件加载到RDD中,然后根据您的要求将其拆分,然后您可以在其上应用模式。这是java的例子。
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
public class RDDtoDF_Update {
public static void main(final String[] args) throws Exception {
SparkSession spark = SparkSession
.builder()
.appName("RDDtoDF_Updated")
.master("local[2]")
.config("spark.some.config.option", "some-value")
.getOrCreate();
StructType schema = DataTypes
.createStructType(new StructField[] {
DataTypes.createStructField("eid", DataTypes.IntegerType, false),
DataTypes.createStructField("eName", DataTypes.StringType, false),
DataTypes.createStructField("eAge", DataTypes.IntegerType, true),
DataTypes.createStructField("eDept", DataTypes.IntegerType, true),
DataTypes.createStructField("eSal", DataTypes.IntegerType, true),
DataTypes.createStructField("eGen", DataTypes.StringType,true)});
String filepath = "F:/Hadoop/Data/EMPData.txt";
JavaRDD<Row> empRDD = spark.read()
.textFile(filepath)
.javaRDD()
.map(line -> line.split("\t"))
.map(r -> RowFactory.create(Integer.parseInt(r[0]), r[1].trim(),Integer.parseInt(r[2]),
Integer.parseInt(r[3]),Integer.parseInt(r[4]),r[5].trim() ));
Dataset<Row> empDF = spark.createDataFrame(empRDD, schema);
empDF.groupBy("edept").max("esal").show();
Thanks.