I'm porting this line from C++ to C#, and I'm not an experienced C++ programmer:
我将这一行从C ++移植到C#,我不是一个经验丰富的C ++程序员:
unsigned int nSize = BN_num_bytes(this);
In .NET I'm using System.Numerics.BigInteger
在.NET中我使用的是System.Numerics.BigInteger
BigInteger num = originalBigNumber;
byte[] numAsBytes = num.ToByteArray();
uint compactBitsRepresentation = 0;
uint size2 = (uint)numAsBytes.Length;
I think there is a fundamental difference in how they operate internally, since the sources' unit tests' results don't match if the BigInt equals:
我认为内部运作方式存在根本区别,因为如果BigInt等于:来源的单元测试结果不匹配:
- 0
- Any negative number
- 0x00123456
任何负数
I know literally nothing about BN_num_bytes
(edit: the comments just told me that it's a macro for BN_num_bits).
我对BN_num_bytes一无所知(编辑:评论只是告诉我它是BN_num_bits的一个宏)。
Question
Would you verify these guesses about the code:
你会验证这些关于代码的猜测:
-
I need to port
BN_num_bytes
which is a macro for((BN_num_bits(bn)+7)/8)
(Thank you @WhozCraig)我需要移植BN_num_bytes这是一个宏((BN_num_bits(bn)+7)/ 8)(谢谢@WhozCraig)
-
I need to port
BN_num_bits
which isfloor(log2(w))+1
我需要移植BN_num_bits,它是floor(log2(w))+ 1
Then, if the possibility exists that leading and trailing bytes aren't counted, then what happens on Big/Little endian machines? Does it matter?
然后,如果存在不计算前导和尾随字节的可能性,那么Big / Little端机器上会发生什么?有关系吗?
Based on these answers on Security.StackExchange, and that my application isn't performance critical, I may use the default implementation in .NET and not use an alternate library that may already implement a comparable workaround.
基于Security.StackExchange上的这些答案,以及我的应用程序不是性能关键,我可以使用.NET中的默认实现,而不是使用可能已经实现类似解决方法的备用库。
Edit: so far my implementation looks something like this, but I'm not sure what the "LookupTable" is as mentioned in the comments.
编辑:到目前为止,我的实现看起来像这样,但我不确定评论中提到的“LookupTable”是什么。
private static int BN_num_bytes(byte[] numAsBytes)
{
int bits = BN_num_bits(numAsBytes);
return (bits + 7) / 8;
}
private static int BN_num_bits(byte[] numAsBytes)
{
var log2 = Math.Log(numAsBytes.Length, 2);
var floor = Math.Floor(log2);
return (uint)floor + 1;
}
Edit 2:
After some more searching, I found that:
经过一番搜索后,我发现:
BN_num_bits does not return the number of significant bits of a given bignum, but rather the position of the most significant 1 bit, which is not necessarily the same thing
BN_num_bits不返回给定bignum的有效位数,而是返回最重要的1位的位置,这不一定是同一个东西
Though I still don't know what the source of it looks like...
虽然我仍然不知道它的来源是什么样的......
2 个解决方案
#1
8
The man page (OpenSSL project) of BN_num_bits says that "Basically, except for a zero, it returns floor(log2(w))+1
.". So these are the correct implementations of the BN_num_bytes
and BN_num_bits
functions for .Net's BigInteger
.
BN_num_bits的手册页(OpenSSL项目)说“基本上,除零之外,它返回楼层(log2(w))+ 1。”。所以这些是.Net的BigInteger的BN_num_bytes和BN_num_bits函数的正确实现。
public static int BN_num_bytes(BigInteger number) {
if (number == 0) {
return 0;
}
return 1 + (int)Math.Floor(BigInteger.Log(BigInteger.Abs(number), 2)) / 8;
}
public static int BN_num_bits(BigInteger number) {
if (number == 0) {
return 0;
}
return 1 + (int)Math.Floor(BigInteger.Log(BigInteger.Abs(number), 2));
}
You should probably change these into extension methods for convenience.
为方便起见,您可能应将这些更改为扩展方法。
You should understand that these functions measure the minimum number of bits/bytes that are needed to express a given integer number. Variables declared as int
(System.Int32
) take 4 bytes of memory, but you only need 1 byte (or 3 bits) to express the integer number 7. This is what BN_num_bytes and BN_num_bits calculate - the minimum required storage size for a concrete number.
您应该了解这些函数测量表示给定整数所需的最小位/字节数。声明为INT(System.Int32)变量占用4个字节的内存,但你只需要1个字节(或3位)来表示整数7。这是什么BN_num_bytes和BN_num_bits计算 - 所需的最小存储大小的混凝土数量。
You can find the source code of the original implementations of the functions in the official OpenSSL repository.
您可以在官方OpenSSL存储库中找到这些函数的原始实现的源代码。
#2
-2
Combine what WhozCraig in the comments said with this link explaining BN_num_bits:
将评论中的WhozCraig与解释BN_num_bits的链接结合起来:
http://www.openssl.org/docs/crypto/BN_num_bytes.html
And you end up with something like this, which should tell you the significant number of bytes:
你最终得到这样的东西,它应该告诉你大量的字节:
public static int NumberOfBytes(BigInteger bigInt)
{
if (bigInt == 0)
{
return 0; //you need to check what BN_num_bits actually does here as not clear from docs, probably returns 0
}
return (int)Math.Ceiling(BigInteger.Log(bigInt + 1, 2) + 7) / 8;
}
#1
8
The man page (OpenSSL project) of BN_num_bits says that "Basically, except for a zero, it returns floor(log2(w))+1
.". So these are the correct implementations of the BN_num_bytes
and BN_num_bits
functions for .Net's BigInteger
.
BN_num_bits的手册页(OpenSSL项目)说“基本上,除零之外,它返回楼层(log2(w))+ 1。”。所以这些是.Net的BigInteger的BN_num_bytes和BN_num_bits函数的正确实现。
public static int BN_num_bytes(BigInteger number) {
if (number == 0) {
return 0;
}
return 1 + (int)Math.Floor(BigInteger.Log(BigInteger.Abs(number), 2)) / 8;
}
public static int BN_num_bits(BigInteger number) {
if (number == 0) {
return 0;
}
return 1 + (int)Math.Floor(BigInteger.Log(BigInteger.Abs(number), 2));
}
You should probably change these into extension methods for convenience.
为方便起见,您可能应将这些更改为扩展方法。
You should understand that these functions measure the minimum number of bits/bytes that are needed to express a given integer number. Variables declared as int
(System.Int32
) take 4 bytes of memory, but you only need 1 byte (or 3 bits) to express the integer number 7. This is what BN_num_bytes and BN_num_bits calculate - the minimum required storage size for a concrete number.
您应该了解这些函数测量表示给定整数所需的最小位/字节数。声明为INT(System.Int32)变量占用4个字节的内存,但你只需要1个字节(或3位)来表示整数7。这是什么BN_num_bytes和BN_num_bits计算 - 所需的最小存储大小的混凝土数量。
You can find the source code of the original implementations of the functions in the official OpenSSL repository.
您可以在官方OpenSSL存储库中找到这些函数的原始实现的源代码。
#2
-2
Combine what WhozCraig in the comments said with this link explaining BN_num_bits:
将评论中的WhozCraig与解释BN_num_bits的链接结合起来:
http://www.openssl.org/docs/crypto/BN_num_bytes.html
And you end up with something like this, which should tell you the significant number of bytes:
你最终得到这样的东西,它应该告诉你大量的字节:
public static int NumberOfBytes(BigInteger bigInt)
{
if (bigInt == 0)
{
return 0; //you need to check what BN_num_bits actually does here as not clear from docs, probably returns 0
}
return (int)Math.Ceiling(BigInteger.Log(bigInt + 1, 2) + 7) / 8;
}