MapReduce编程实现学习

时间:2021-06-20 16:51:28

MapReduce主要包括两个阶段:一个是Map,一个是Reduce. 每一步都有key-value对作为输入和输出。

  Map阶段的key-value对的格式是由输入的格式决定的,如果是默认的TextInputFormat,则每行作为一个记录进程处理,其中key为此行的开头相对文件的起始位置,value就是此行的字符文本。Map阶段的输出的key-value对的格式必须同reduce阶段的输入key-value对的格式相对应。

下面开始尝试,假设我们需要处理一批有关天气的数据,其格式如下:

按照ASCII码存储,每行一条记录
    每一行字符从0开始计数,第15个到第18个字符为年
    第25个到第29个字符为温度,其中第25位是符号+/-

Text文本样例:

0067011990999991950051507+0000+
0043011990999991950051512+0022+
0043011990999991950051518-0011+
0043012650999991949032412+0111+
0043012650999991949032418+0078+
0067011990999991937051507+0001+
0043011990999991937051512-0002+
0043011990999991945051518+0001+
0043012650999991945032412+0002+
0043012650999991945032418+0078+

上代码啦:

package Hadoop;

import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.Reducer.Context;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; import java.io.IOException;
import java.util.StringTokenizer; /**
* Created by root on 4/23/16.
*/
public class hadoopTest extends Configured implements Tool{
   //map将输入中的value复制到输出数据的key上,并直接输出
public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {      //实现map函数
@Override
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
String year = line.substring(15, 19);
int airTemperature; if (line.charAt(25) == '+') { airTemperature = Integer.parseInt(line.substring(26, 30)); } else { airTemperature = Integer.parseInt(line.substring(25, 30)); }
context.write(new Text(year), new IntWritable(airTemperature));
} }

     //reduce将输入中的key复制到输出数据的key上,并直接输出
public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException { int maxValue = Integer.MIN_VALUE;
for (IntWritable sorce : values) {
maxValue = Math.max(maxValue, sorce.get());
} context.write(key, new IntWritable(maxValue));
}
} @Override
public int run(String[] arg0) throws Exception {
        //这里测试用,传入的路径直接赋值
String InputParths = "/usr/local/hadooptext.txt";
String OutputPath = "/usr/local/hadoopOut";
        //声明一个job对象,这里的getConf是获取hadoop的配置信息,需要继承Configured.
Job job = new Job(getConf());
       //设置job名称
job.setJobName("AvgSorce");
//设置mapper输出的key-value对的格式
job.setOutputKeyClass(Text.class);
       
        //设置Mapper,默认为IdentityMapper,这里设置的代码中的Mapper
job.setMapperClass(hadoopTest.Map.class);
       //Combiner可以理解为小的Reducer,为了降低网络传输负载和后续Reducer的计算压力 可以单独写一个方法进行调用
job.setCombinerClass(Reduce.class);
        //设置reduce输出的key-value对的格式
job.setOutputValueClass(IntWritable.class);
//设置输入格式
job.setInputFormatClass(TextInputFormat.class);
//设置输入输出目录
FileInputFormat.setInputPaths(job, new Path(InputParths));
FileOutputFormat.setOutputPath(job, new Path(OutputPath));
boolean success = job.waitForCompletion(true);
return success ? 0 : 1;
} public static void main(String[] args) throws Exception {
int ret = ToolRunner.run(new hadoopTest(), args);
System.exit(ret);
}
}

Map函数继承自MapReduceBase,它实现了Mapper接口,此接口是一个范型类型,它有4种形式的参数,分别用来指定map的输入key值类型、输入value值类型、输出key值类型和输出value值类型。这里使用的是TextInputFormat,它的输出key值是LongWritable类型,输出value是Text类型。因为需要输出<word,1>形式,因此输出的key值类型是Text,输出的value值类型是IntWritable

InputFormat()和inputSplit

  InputSplit是Hadoop定义的用来传输给每个单独的map的数据,InputSplit存储的并非数据本身,而是一个分片长度和一个记录数据位置的数组。生成InputSplit的方法可以通过InputFormat()来设置。当数据传输给map时,map会将输入分片传送到InputFormat上,InputFormat调用getRecordReader()方法生成RecordReader,RecordReader再通过creatKey()、creatValue()方法创建可供map处理的<key,value>对,即<k1,v1>,InputFormat()方法是用来生成可供map处理的<key,value>对的。

TextInputFormat是Hadoop默认的输入方法,在TextInputFormat中,每个文件都会单独地作为map的输入,而这是继承自FileInputFormat的,之后,每行数据都会生成一条记录,每条记录则表示成<key,value>形式。

这里的key是每个数据的记录在数据分片中的字节偏移量,数据类型是LongWritable.

value值是每行的内容,数据类型是Text.

执行结果:

MapReduce编程实现学习

MapReduce编程实现学习

MapReduce编程实现学习