<转>KMP算法详解

时间:2022-07-06 16:48:56

看了好久的KMP算法,都一直没有看明白,直到看到了这篇博客http://www.tuicool.com/articles/e2Qbyyf让我瞬间顿悟。

如果你看不懂 KMP 算法,那就看一看这篇文章 ( 绝对原创,绝对通俗易懂 )

KMP 算法,俗称“看毛片”算法,是字符串匹配中的很强大的一个算法,不过,对于初学者来说,要弄懂它确实不易。整个寒假,因为家里没有网,为了理解这个算法,那可是花了九牛二虎之力!不过,现在我基本上对这个算法理解算是比较透彻了!特写此文与大家分享分享!

我个人总结了, KMP 算法之所以难懂,很大一部分原因是很多实现的方法在一些细节的差异。怎么说呢,举我寒假学习的例子吧,我是看了一种方法后,似懂非懂,然后去看另外的方法,就全都乱了!体现在几个方面: next 数组,有的叫做“失配函数”,其实是一个东西; next 数组中,有的是以下标为 0 开始的,有的是以 1 开始的; KMP 主算法中,当发生失配时,取的 next 数组的值也不一样!就这样,各说各的,乱的很!

所以,在阐述我的理解之前,我有必要说明一下,我是用 next 数组的, next 数组是以下标 0 开始的!还有,我不会在一些基础的概念上浪费太多,所以你在看这篇文章时必须要懂得一些基本的概念,例如 “ 朴素字符串匹配 ”“ 前缀 ” , “ 后缀 ” 等!还有就是,这篇文章的每一个字都是我辛辛苦苦码出来的,图也是我自己画的!如果要转载,请注明出处!好了,开始吧!

假设在我们的匹配过程中出现了这一种情况: <转>KMP算法详解

根据 KMP 算法,在该失配位会调用该位的 next 数组的值!在这里有必要来说一下 next 数组的作用!说的太繁琐怕你听不懂,让我用一句话来说明:

返回失配位之前的最长公共前后缀!

好,不管你懂不懂这句话,我下面的文字和图应该会让你懂这句话的意思以及作用的!

首先,我们取之前已经匹配的部分(即蓝色的那部分!)

<转>KMP算法详解

我们在上面说到 next 数组的作用时,说到 “ 最长公共前后缀 ” ,体现到图中就是这个样子!

<转>KMP算法详解

接下来,就是最重要的了!

<转>KMP算法详解

没错,这个就是 next 数组的作用了 :

返回当前的最长公共前后缀长度,假设为 len 。因为数组是由 0 开始的,所以 next 数组让第 len 位与主串匹配就是拿最长前缀之后的第 1 位与失配位重新匹配,避免匹配串从头开始!如下图所示!

<转>KMP算法详解

(重新匹配刚才的失配位!)

如果都说成这样你都不明白,那么你真的得重新理解什么是 KMP 算法了!

接下来最重要的,也是 KMP 算法的核心所在,就是 next 数组的求解!不过,在这里我找到了一个全新的理解方法!如果你懂的上面我写的的,那么下面的内容你只需稍微思考一下就行了!

跟刚才一样,我用一句话来阐述一下 next 数组的求解方法,其实也就是两个字:

继承

a 、当前面字符的前一个字符的对称程度为 0 的时候,只要将当前字符与子串第一个字符进行比较。这个很好理解啊,前面都是 0 ,说明都不对称了,如果多加了一个字符,要对称的话最多是当前的和第一个对称。比如 agcta 这个里面 t 的是 0 ,那么后面的 a 的对称程度只需要看它是不是等于第一个字符 a 了。

b 、按照这个推理,我们就可以总结一个规律,不仅前面是 0 呀,如果前面一个字符的 next 值是 1 ,那么我们就把当前字符与子串第二个字符进行比较,因为前面的是 1 ,说明前面的字符已经和第一个相等了,如果这个又与第二个相等了,说明对称程度就是 2 了。有两个字符对称了。比如上面 agctag ,倒数第二个 a 的 next 是 1 ,说明它和第一个 a 对称了,接着我们就把最后一个 g 与第二个 g 比较,又相等,自然对称成都就累加了,就是 2 了。

c 、按照上面的推理,如果一直相等,就一直累加,可以一直推啊,推到这里应该一点难度都没有吧,如果你觉得有难度说明我写的太失败了。

当然不可能会那么顺利让我们一直对称下去,如果遇到下一个不相等了,那么说明不能继承前面的对称性了,这种情况只能说明没有那么多对称了,但是不能说明一点对称性都没有,所以遇到这种情况就要重新来考虑,这个也是难点所在。

<转>KMP算法详解

如果蓝色的部分相同,则当前 next 数组的值为上一个 next 的值加一,如果不相同,就是我们下面要说的!

如果不相同,用一句话来说,就是:

从前面来找子前后缀

1 、如果要存在对称性,那么对称程度肯定比前面这个的对称程度小,所以要找个更小的对称,这个不用解释了吧,如果大那么就继承前面的对称性了。

2 、要找更小的对称,必然在对称内部还存在子对称,而且这个必须紧接着在子对称之后。

如果看不懂,那么看一下图吧!

<转>KMP算法详解

好了,我已经把该说的尽可能以最浅显的话和最直接的图展示出来了,如果还是不懂,那我真的没有办法了!

<转>KMP算法详解

说了这么多,下面是代码实现

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define N 100 void cal_next( char * str, int * next, int len )
{
int i, j; next[] = -;
for( i = ; i < len; i++ )
{
j = next[ i - ];
while( str[ j + ] != str[ i ] && ( j >= ) )
{
j = next[ j ];
}
if( str[ i ] == str[ j + ] )
{
next[ i ] = j + ;
}
else
{
next[ i ] = -;
}
}
} int KMP( char * str, int slen, char * ptr, int plen, int * next )
{
int s_i = , p_i = ; while( s_i < slen && p_i < plen )
{
if( str[ s_i ] == ptr[ p_i ] )
{
s_i++;
p_i++;
}
else
{
if( p_i == )
{
s_i++;
}
else
{
p_i = next[ p_i - ] + ;
}
}
}
return ( p_i == plen ) ? ( s_i - plen ) : -;
} int main()
{
char str[ N ] = {};
char ptr[ N ] = {};
int slen, plen;
int next[ N ]; while( scanf( "%s%s", str, ptr ) )
{
slen = strlen( str );
plen = strlen( ptr );
cal_next( ptr, next, plen );
printf( "%d\n", KMP( str, slen, ptr, plen, next ) );
}
return ;
}